Chứng minh rằng 2 + 2^2 + 2^3 + .... + 2^59 + 2^60 + 2^2021 chia hết cho 5
Giải chi tiết giúp mk nhé. Mk cảm ơn!
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
Cho P = 2+2 ngũ 4 + 2 ngũ 7 +......= 2 ngũ 106 Chứn tỏ rằng :P chia hết cho 7 3
Bì rất khó,không trả lời nổi lun
chứng tỏ rằng: (21+22+23+24+.....+259+260) chia hết cho 3
Đặt \(A=2+2^2+2^3+2^4+....+2^{59}+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2\cdot3+2^3\cdot3+....+2^{59}\cdot3\)
\(\Leftrightarrow A=3\cdot\left(2+2^3+....+2^{59}\right)\)
Vậy A chia hết cho 3 (đpcm)
*) Chứng mình A \(⋮\)3
Ta có : A= ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260)
= 2. ( 1 + 2 ) + 23 . ( 1 + 2) + ... + 259 . ( 1+ 2)
= 2 . 3 + 23 . 3 + .....+ 259 . 3
= 3. (2 + 23 + .... + 259 ) \(⋮\)3
Vậy A \(⋮\)3 => đpcm
Cho S=2+22+23+24+..........+259+260
Chứng tỏ rằng S chia hết cho 15
S=2+2^2+2^3+2^4+...+2^59+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=(1+2+2^2+2^3)(2+...+2^57)
=15.(2+...+2^57) chia hết cho 15
Chứng tỏ tổng 2+2^2+2^3+2^4...+2^59+2^60 chia hết cho 3
Đặt tổng trên là A
Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)\)chia hết cho 3
=> A chia hết cho 3 (Đpcm).
Ta có :
2+2^2+2^3+2^4+...+2^59+2^60=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2x3+2^3x3+...+2^59x3
=(2+2^3+...+2^59)x3
Vì 3 chia hết cho 3 nên tổng trên chia chiết cho 3 (đpcm)
A=2+22+23+24+...+259+260
Chứng tỏ rằng A chia hết cho 3
A chia hết cho 7
a) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 259 ( 1 + 2 )
A = 3 ( 2 + 23 + ... + 259 )
A chia hết cho 3 ( đpcm )
b) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 7 ( 2 + ... + 258 )
A chia hết cho 7 ( đpcm )
chứng tỏ tổng \(2+2^2+2^3+2^4+...+2^{59}+2^{60}\)chia hết cho 3.
\(2+2^2+2^3+....+2^{59}+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+.....+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)\)
Vì có cơ số là 3 nên \(=3\left(2+2^3+...+2^{59}\right)\)
Vậy : \(2+2^2+2^3+....+2^{59}+2^{60}\)
cho A-2021-2021^2-2021^3-...-2021^2022 chứng tỏ rằng A chia hết cho 6. Giải gấp cho tèo với ạ 🥺