CHỨNG MINH RẰNG NẾU SỐ TỰ NHIÊN A KO LÀ SỐ CHÍNH PHƯƠNG THÌ CĂN A LÀ SỐ VÔ TỈ
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.
Vậy\(\sqrt{a}\) là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành
Do a không phải là số chính phương nên \(\frac{m}{n}\)không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Chứng minh rằng:
a, Nếu n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương.
b, Nếu 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương.
c, Nếu n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương.
d, Nếu mỗi số m và n là tổng của hai số chính phương thì tích của mn cũng là tổng của hai số chính phương.
a.Biết rằng số tự nhiên n có thể viết được thành tổng của hai số chính phương. Chứng minh rằng 2n và 5n cũng viết được thành tổng của hai số chính phương.
b.Biết rằng số tự nhiên n thỏa mãn 2n có thể viết thành tổng hai số chính phương. Chứng minh rằng n cũng viết thành tổng hai số chính phương.
c.Chứng minh rằng nếu mỗi số tự nhiên m, n có thể viết thành tổng của hai số chính phương thì tích mn cũng viết được thành tổng hai số chính phương.
d.Chứng minh rằng \(2017^{2018}+2019^{2020}\)có thể viết thành hai lần của tổng của hai số chính phương.
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
a)chứng tỏ rằng n là số tự nhiên thì B=n2 không chia hết cho 3
b)nếu n là số ko chai hết cho 3 thì n2 ko chia hết cho 3
c)tìm số tự nhiên n khi n2 chia hết cho 3
Cho hai đa thức A = 5x + y + 1 và B = 3x - y + 4 . Chứng minh rằng nếu x = m và y = n với m và n là một số tự nhiên thì tích A . B là một số chẵn
2 trường hợp:
1,m;n cùng dấu.
2,m;n khác dấu.
chứng minh rằng tổng bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
Chứng minh rằng nếu mỗi giá trị của dấu hiệu đều tăng thêm a đơn vị thì số trung bình cộng cũng tăng thêm a đơn vị (Với a là số tự nhiên)