chứng tỏ rằng nếu a-2b là bội của 7 thì a-9b là bội của 7.Điều ngược lạ có đúng k
cho a,b là hai số nguyên bất kì . Chứng minh a-9b là bội của 7 khi a-2b là bội của 7 .Điều ngược lại có đúng không
Cho a;b thuộc z chứng tỏ rằng:
a-9b thuộc B(7) khi a -2b là (7). Điều ngược lại có đúng không?
cho ab là số nguyên cmr nếu a-2b chia hết cho 7 thì a-9b chia hết cho 7, điều ngược lại có đúng không
\(a-2b⋮7;7b⋮7\Rightarrow a-2b-7b=a-9b⋮7\)
\(a-9b⋮7;7b⋮7\Rightarrow a-9b+7b=a-2b⋮7\)
chứng tỏ rằng : nếu a là bội của b ; b là bội của c thì a là bội của c
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
cho 3 số tự nhiên a,b,c khác 0 chứng tỏ rằng nếu a là bội của b; b là bội của c thì a là bội của c
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
chứng tỏ rằng nếu a thuộc Z thì :
a, M =a(a+2)-a(a-5)-7 là bội của 7
b, N =(a-2) (a+3) -(a+3) (a+2) là số chẵn
Cho ba số tự nhiên a,b,c khác 0 , Chứng tỏ rằng : Nếu "a" là bội của "b" , "b" là bội của "c" thì "a" là bội của "c"?
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Cho ba số tự nhiên a, b, c\(\ne0\). Chứng tỏ rằng: Nếu a là bội của b; b là bội của c thì a là bội của c.
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
a) Cho a,b số tự nhiên thỏa mãn điều kiện 5a + 2b chia hết cho 7 chứng minh 3a + 4b chia hết cho 7
b) cho a,b số tự nhiên. Chứng minh (5a+3b) và (13a + 8b) cùng là bội của 2017 thì a, b cũng là bội của 2017
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)