Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Lê
Xem chi tiết
Trần Thj Thu Hiền
Xem chi tiết
Minh Triêt Nguyễn
22 tháng 1 2015 lúc 22:29

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

cao thành sơn
21 tháng 6 2020 lúc 21:24

ùi hơi khó thế này thì có làm đc ko

Khách vãng lai đã xóa
NGUYỄN AN PHONG
Xem chi tiết
Khánh Vân Lê
Xem chi tiết
Khanh Nguyễn Ngọc
9 tháng 9 2020 lúc 10:11

Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương

\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)

\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:

\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.

Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)

\(\Rightarrow3y^2+3y+1=2n+5\)

Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:

\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)

Vì nguyên dương nên nhận y=2--->n=7

Khách vãng lai đã xóa
Quốc Hưng
Xem chi tiết
vudinhphuc
Xem chi tiết
Nguyễn Bá Thúc Hào
Xem chi tiết
Đoàn Đức Hà
16 tháng 7 2021 lúc 0:56

Đặt \(2n+1=a^2,3n+1=b^2\).

\(15n+8=9\left(2n+1\right)-\left(3n+1\right)=9a^2-b^2=\left(3a-b\right)\left(3a+b\right)\)

Hiển nhiên \(3a+b>1\).

Nếu \(3a-b=1\Rightarrow b+1⋮3\).

mà \(b^2\equiv1\left(mod3\right)\Leftrightarrow b\equiv1\left(mod3\right)\Leftrightarrow b\equiv2\left(mod3\right)\)mâu thuẫn

do đó \(3a-b\ne1\).

Do đó \(15n+8\)là hợp số. 

Khách vãng lai đã xóa
Nguyễn Thu Minh
Xem chi tiết
Linhhhhhh
Xem chi tiết