a) Rút gọn Q b) Tính giá trị của Q tại x=4 Help me
Cho: A=\(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2x}{2+x}\) : \(\frac{x^2-3x}{2x^2-x^3}\)
a)Rút gọn A
b)Tìm giá trị của x để A>0
Tính giá trị của A trong trường hợp x thõa mãn \(|x-7|=4\)
Help!!!Help!!!
4x^2-28x+49
Rút gọn r tính giá trị của biểu thức khi x = 4 help me please !!
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
Khi x=4 thì \(4x^2-28x+49=\left(2x-7\right)^2=\left(2\cdot4-7\right)^2=1\)
Cho biểu thức:B= (\(\frac{2x+1}{2x-1}\)+\(\frac{4}{1-4x^2}\)-\(\frac{2x-1}{2x+1}\)) :\(\frac{x^2+2}{2x+1}\)
a)Rút gọn B
b)Tính B khi x = -1
c)Tìm giá trị lớn nhất của B
Help me :(((((((((((((((((((((((((((((
Help me :<<<<<<<<<<<
\(B=\left(\frac{2x+1}{2x-1}+\frac{4}{1-4x^2}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\left(x\ne\pm\frac{1}{2}\right)\)
\(\Leftrightarrow B=\left(\frac{2x+1}{2x-1}-\frac{4}{4x^2-1}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)
\(\Leftrightarrow B=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{4}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right)\cdot\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow B=\frac{\left(2x\right)^2+2\cdot1\cdot2x+1-4-\left[\left(2x\right)^2-2\cdot2x\cdot1+1^2\right]}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow B=\frac{4x^2+4x-3-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow B=\frac{\left(8x-4\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4}{x^2+2}\)
b) \(B=\frac{4}{x^2+2}\left(x\ne\pm\frac{1}{2}\right)\)
Với x=-1 (TMĐK) thay vào B ta có:
\(B=\frac{4}{\left(-1\right)^2+2}=\frac{4}{1+2}=\frac{4}{3}\)
Vậy \(B=\frac{4}{3}\)khi x=-1
Yay !!!!!! thanks anhdun
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
\(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a) Với giá trị nào của x thì biểu thức A có nghĩa?
b) Rút gọn biểu thức A
c) Tìm giá trị của x để A = \(-\frac{1}{2}\)
Help me
a) A có nghĩa khi \(\hept{2x-2\ne02-2x^2\ne0\Leftrightarrow\hept{\begin{cases}2x\ne2\\2x^2\ne2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne\pm1\end{cases}\Leftrightarrow}x\ne\pm1}\)
Vậy A có nghĩa khi \(x\ne\pm1\)
b) \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\left(x\ne\pm1\right)\)
\(\Leftrightarrow A=\frac{x}{2\left(x-1\right)}+\frac{x^2+1}{2\left(1-x^2\right)}\)
\(\Leftrightarrow\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x^2+x-x^2+1}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x-1\right)}\)
Vậy A=\(\frac{1}{2\left(x-1\right)}\left(x\ne\pm1\right)\)
b) \(A=\frac{1}{2\left(x-1\right)}\left(x\ne\pm1\right)\)
A=\(\frac{-1}{2}\)\(\Leftrightarrow\frac{1}{2\left(x-1\right)}=\frac{-1}{2}\)
\(\Leftrightarrow-2\left(x-1\right)=2\)
<=> x-1=-1
<=> x=0 (tmđk)
Vậy x=0 thì \(A=\frac{-1}{2}\)
a) \(x\ne1,2;x\inℝ\)
a) Để biểu thức A có nghĩa \(\hept{\begin{cases}2-2x^2\ne0\\2x-2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}2\left(1-x\right)\left(1+x\right)\ne0\\2\left(x-1\right)\ne0\end{cases}}\Rightarrow x\ne\pm1\)
b) Rút gọn \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}=\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x^2-1\right)}=\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x+1\right)}\)
c) \(A=-\frac{1}{2}\Leftrightarrow\frac{1}{2\left(x+1\right)}=-\frac{1}{2}\Leftrightarrow\frac{1}{x+1}=-1\Leftrightarrow x+1=-1\Leftrightarrow x=-2\)Vậy x=-2 Thì A=-1/2
Cho A= | 2x - 1| - (x - 5)
a) Rút gọn biểu thức A.
b) Với các giá trị nào của x thì A= 4
HELP ME!
a ) A = |2x - 1| - (x - 5)
Ta có : \(\left|2x-1\right|=\hept{\begin{cases}2x-1\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\\-\left(2x-1\right)\Leftrightarrow2x-1< 0\Rightarrow x< \frac{1}{2}\end{cases}}\)
TH1 : 2x - 1 ≥ 0 thì A = 2x - 1 - (x - 5) = 2x - 1 - x + 5 = x + 4
TH2 : 2x - 1 < 0 thì A = - 2x + 1 - x + 5 = - 3x + 6
b ) Để A = 4 <=> x + 4 = 4 hoặc - 3x + 6 = 4
TH1 : x + 4 = 4 => x = 0
TH2 : - 3x + 6 = 4 => x = 2/3
Vậy x = { 0;2/3 } thì A = 4
a, A=|2x-1|-(x-5)
A=|2x-1|-x+5
A=2x-1-x+5
A=2x-x+4
A=x+4
Cho biểu thức \(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
a) tìm diều kiện để giá trị cú biểu thức A đc xác định
b)rút gọn biểu thức A
c) tính giá trị của A khi x=3
d) tìm x khi A=-2
HELP ME!!!!!!!!!!!
Cho A=|X+5|+2-X
a)Tính giá trị của A tại X=\(-\frac{3}{4}\)
b)Rút gọn A với X bé hơn hoặc bằng -5
c)Tìm GTNN của A
\(A=\left|x+5\right|+2-x\)
Thay \(x=-\frac{3}{4}\)vào \(\left|x+5\right|+2-x\)ta có:
\(\left|-\frac{3}{4}+5\right|+2-\frac{-3}{4}\)
\(=\left|-\frac{3}{4}+\frac{20}{4}\right|+2-\frac{-3}{4}\)
\(=\frac{17}{4}+2+\frac{3}{4}\)
\(=\left(\frac{17}{4}+\frac{3}{4}\right)+2\)
\(=5+2\)
\(=7\)
Cho A = (1/ x - 2 - 2x/ 4- x^2 + 1/ 2 + x) (2/x - 1)
a, Tìm ĐKXĐ (điều kiện xác định) của A
b,Rút gọn A
c,Tính giá trị của biểu thức A ( sau khi đã rút gọn) tại x thỏa mãn 2x^2 + x = 0
d, Tìm x để A = 1/2
e, Tìm x nguyên để A nguyên dương.
Help me ! Mai mình thi cuối kì 1 môn Toán rồi !