= 1/1+2 +1/1+2+3 +...+1/1+2+3+...+2013
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
2013+(2013/1+2)+(2013/1+2+3)+(2013/1+2+3+4)+...+(2013/1+2+3+...+2012)
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
Tính \(A=2013+\frac{2013}{1+2}+\frac{2013}{1+2+3}+\frac{2013}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
Ta có : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)
Vậy nên : \(A=2013+\frac{2013}{\frac{3.2}{2}}+\frac{2013}{\frac{4.3}{2}}+...+\frac{2013}{\frac{2013.2012}{2}}\)
\(A=2013+\frac{4026}{2.3}+\frac{4016}{3.4}+...+\frac{4026}{2012.2013}\)
\(A=4026\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\right)\)
\(A=4026\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(A=4026\left(1-\frac{1}{2013}\right)=4026.\frac{2012}{2013}=4024.\)
1) 1/2 + 1/3 + 1/4 + ... + 1/2013 + 1/2014
2) 2014 + 2013/2 + 2012/3 + 2011/4 + ... + 2/2013 + 1/2014
tính tổng B=2013+(2013/1+2)+(2013/1+2+3)+...+(2013/1+2+3+...+2012)
Cho A=$\frac{n-2}{n+3}$n−2n+3 .Tìm giá trị của n để
a) A là phân số
b) A là một số nguyên
mọi người giải hộ tui với!!!
\(A=\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=1+\frac{5}{n+3}\)
a) \(n\in R\) trừ \(n=-3\)
b) để A là số nguyên thì \(\frac{5}{n+3}\in Z\)
Suy ra \(n+3\in\left\{1;5;-1;-5\right\}\)
Suy ra \(n\in\left\{-2;2;-4;-8\right\}\)
tinh tong S=2013+2013/1+2+2013/1+2+3+...+2013/1+2+3+...+2012
Tính giá trị biểu thức B=\(2013+\frac{2013}{1+2}+\frac{2013}{1+2+3}+\frac{2013}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013.(1+
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)
B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)
Maỳ có bị óc chó không mà bảo câu trả lời của đại ca tao là sai
Tính tổng M=1/(1+1^2+1^4)+2/(1+2^2+2^4)+3/(1+3^2+3^4)+.....+2013/(1+2013^2+2014^2)
Cái này chắc có quy luật
Tra google chắc có
Nhớ tich nhen
quy luật gì mình nhìn không ra nên không giải dc
tinh B=2013+2013/1+2+2013/1+2+3+....+2013/1+2+3+...+2012