Tìm 2 số tự nhiên liên tiếp biết rằng tổng bình phương của 2 số đó bằng 221
Chứng tỏ rằng bình phương của 1 số lẻ bằng tổng bình phương của 2 số tự nhiên liên tiếp trong đó số lớn cũng bằng tổng bình phương của 2 số tự nhiên liên tiếp
Tìm 2 số tự nhiên liên tiếp biết tổng các số đó bình phương bằng 85
1. Tìm va số tự nhiên chẵn liên tiếp biết rằng tổng các tích của hai trong ba số ấy bằng 44
2. Tổng ba số a, b, c bằng 9; tổng các bình phương của chúng bằng 53. Tính ab + bc + ca
Bài 1: bạn An tính bình phương của bốn số tự nhiên được bốn kết quả là 47436, 16819, 27641, 41528. Bạn Tuấn nói rằng cả bốn kết quả trên đều sai. Vì sao Tuấn khẳng định được như vậy ?
Bài 2: Tính a^2 + b^2, biết a + b = 5 và ab=1
Bài 3: Viết tích (a^2+b^2)(c^2+d^2) dưới dạng tổng hai bình phương
Bài 4: Tìm hai số tự nhiên lẻ liên tiếp, biết rằng hiệu các bình phương của chúng bằng 56
Bài 5: Tìm số tự nhiên có hai chữ số, biết rằng hiệu của số đó và số gồm hai chữ số ấy viết theo thứ tự ngược lại bằng 36, hiệu các bình phương của chữ số hàng chục và chữ số hàng đơn vị bằng 40
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
Tìm 2 số tự nhiên lẻ liên tiếp, biết rằng hiệu các bình phương của chúng bằng 56
Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.
Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.
=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15
Bài 4 :
a) Tìm hai số tự nhiên chẵn liên tiếp biết hiệu các bình phương của 2 số ấy là 68
b) Tìm hai số tự nhiên lẻ liên tiếp biết tổng các bình phương của 2 số ấy là 2594
c) Tìm tất cả số tự nhiên n thỏa mãn \(n^2+6n+12\) là số chính phương
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
tìm 2 số tự nhiên liên tiếp biết bình phương của số lớn trừ bình phương của số bé bằng 11111
Tích, tổng và hiệu 2 số tự nhiên bằng 303. tìm 2 số đó, biết rằng 2 số này không phải là 2 số tự nhiên liên tiếp.