Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghiêm Thảo Tâm
Xem chi tiết
Nghiêm Thảo Tâm
Xem chi tiết
Khanh Linh Ha
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2017 lúc 16:45

Đáp án đúng : B

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2017 lúc 12:14

Đáp án C.

Lê Thanh Quang
Xem chi tiết
Nguyễn Linh Chi
10 tháng 6 2020 lúc 18:22

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 6 2020 lúc 18:31

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

Khách vãng lai đã xóa
Hoàng Lê Minh
Xem chi tiết
Đinh Thị Thảo Vi
Xem chi tiết
Ruby Sweety
Xem chi tiết
ducchinhle
26 tháng 8 2018 lúc 20:30

với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn

=> Không thể CM

I don
26 tháng 8 2018 lúc 20:47

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)

\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)

\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)

\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Làm tương tự như trên. ta có:

\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)

Cô Nàng Lạnh Lùng
Xem chi tiết