Tìm số tư nhiên n để phân số sau đạt GTLN: \(\frac{3n+7}{2n-3}\)
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
21. Tìm các số tự nhiên n để các phân số sau là phân số tối giản:
a)\(\dfrac{2n+3}{4n+1}\)
b)\(\dfrac{3n+2}{7n+1}\)
c) \(\dfrac{2n+7}{5n+2}\)
Tìm các số tự nhiên n để các phân số sau tối giản:
a)\(\frac{2n+3}{4n+1}\)
b)\(\frac{3n+2}{7n+1}\)
c)\(\frac{2n+7}{5n+2}\)
Tìm các số tự nhiên n để các phân số sau là phân số tối giản :
a)2n+3/4n+1
b)3n+2/7n+1
c)2n+7/5n+2
a) để 2n+3/4n+1 là phân số tối giản thì ta đi chứng minh 2n+3 và 4n+1 là nguyên tố cùng nhau .
=>UCLN ( 2n+3;4n+1 ) = d
ta có : 2n+1 chia hết cho d
4n+1 chia hết cho d
=> 2(2n+1) chia hết cho d
4n+1 chia hết cho d
=> 4n+2 chia hết cho d
4n+1 chia hết cho d
=> [( 4n+2)-(4n+1)] chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ucln ( 2n+3; 4n+1)=1
vì ucln ( 2n+3;4n+1)=1 nên 2n+3=1;4n+1=1
2n=1-3 4n=1-1
2n=-2 4n=0
n=-1(loại) n=0 ( chọn)
vậy để 2n+3/4n+1 là phân số tối giản thì n=0
tớ nghĩ thế ko biết có đúng ko !
nhưng nếu cảm thấy đúng thì nhớ tk cho tớ nhé
mấy phần còn lại thì các bạn cứ làm như phần a nhé !
Câu 11. Không khí nóng nhẹ hơn không khí lạnh vì
A. khối lượng riêng của không khí nóng nhỏ hơn.
B. khối lượng của không khí nóng nhỏ hơn.
C. khối lượng của không khí nóng lớn hơn.
D. khối lượng riêng của không khí nóng lớn hơn.
Tìm các số tự nhiên n để các phân số sau là phân số tối giản
a, 2n+3 / 4n+1
b, 3n+2 / 7n+1
c, 2n+7 / 5n+1
a) n = 0 ; 4 ; 3 ; 2 ; 100 ; ...
b) n = 5 ; 4 ; 1 ; ...
c) n = 0 ; ...
bạn tự giải lấy các số còn '' nhại '' nghen
Tìm các số tự nhiên n để các phân số sau là phân số tối giản ;
a, 2n+3/4n+1
b, 3n+2/ 7n+1
c, 2n+7/5n+2
Câu hỏi của Đỗ Quynhg Anh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo bài nhé !!!
oke, mình cảm ơn nhé
Tìm số tự nhiên n để phân số \(B=\frac{10n-3}{4n-10}\) đạt GTLN. Tìm GTLN đó.
Tìm các số tự nhiên n để các phân số sau là phân số tối giản : P=\(\frac{3n+2}{7n+1}\); Q=\(\frac{2n+7}{5n+2}\).
bài 5 Tìm số tự nhiên n để các phân số sau là phân số tối giản
a) n + 7 phần n - 2
b) 2n + 3 phần 4n + 1
c) 3n + 2 phần 7n + 1
d) 2n + 7 phần 5n + 2
e) 6n + 99 phần 3n + 4