cmr: Với mọi số nguyên dương thì:
5^n.(5^n+1) - 6^n .(3^n +2^n) chia hết cho 91
CMR với mọi số nguyên dương n đều có
5^n(5^n+1)-6^n(3^n+2^n) chia hết cho 91
Ta có: 91 = 7.13 mà ƯCLN(7 ; 13) = 1 nên ta cần chứng minh A chia hết cho 7 và chia hết cho 13.
Đặt A = (25n – 18n) – (12n – 5n)
Vì (25n – 18n)(25 – 18)= 7 ; (12n – 5n) (12 – 5) = 7 nên A chia hết cho 7
A = (25n – 12n) – (18n – 5n)
Vì (25n – 12n)(25 – 12)= 13 ; (18n – 5n) (18 – 5) = 13 nên A chia hết cho 13
A vừa chia hết cho 7, vừa chia hết cho 13, mà (7 ; 13) = 1
Nên A chia hết cho BCNN(7 ; 13) hay A chia hết cho 91
CMR với mọi số nguyên dương n đều có
5^n(5^n+1)-6^n(3^n+2^n) chia hết cho 91
chứng minh rằng với mọi số n nguyên dương đều có A=5^n(5^n+10-6^n(3^n+2^n) chia hết cho 91
CMR với mọi số nguyên n nguyên dương đều có
A = \(5^n.\left(5^n+1\right)-6^n.\left(3^n+2\right)\) chia hết cho 91
Sửa lại đầu bài là:
\(5^n.\left(5^n+1\right)-6^n.\left(3^n+2^n\right)\) chia hết cho 91
cmr với mọi số nguyên dương đều có : A=5n(5n +1) - 6n( 3n+2) chia hết cho 91 . Giúp tớ với
CM với mọi số n nguyên dương thì A= 5n(5n+1)-6n(3n+2) chia hết cho 91
CMR với mọi số nguyên dương đều có :
A = 5n(5n +1) - 6n(3n+2n) chia hết cho 91
CMR: với mọi số nguyên dương đều có A=\(5^n\cdot\left(5^n+1\right)-6^n\cdot\left(3^n+2\right)\) chia hết cho 91
CMR với mon số nguyên dương n sao cho A= 5^n*(5^n+1)-6^n*(3^n+2) chia hết 91
a, CMR: với mọi số n nguyên dương đều có: A=5n(5n+1)-6n(3n+2) chia hết cho 91
b, Tìm tất cả các số nguyên tố p sao cho p2+14 là số nguyên tố
Chứng minh rằng với mọi x nguyên dương thì:
b) 5n(5n+1) -6n(3n+2) chia hết cho 91
gt= 25n + 5n - 18n - 12n
mình kí hịu đồng dư là dd nhak.
* Chứng minh gt chia het cho 7:
25 dd 4 (mod 7) => 25n dd 4n (mod 7)
18 dd 4 (mod 7) => 18n dd 4n (mod 7)
=> 25n - 18n chia hết cho 7.
chứng minh tt 5n - 12n chia hết cho 7
=> gt chia hết cho 7
* Chứng minh gt chia hết cho 13
25 dd -1 (mod 13) => 25n dd (-1)n (mod 13)
12 dd -1 (mod 13) => 12n dd (-1)n (mod 13)
=> 25n - 12n chia hết cho 13
chứng minh tt 5n - 18n chia hết cho 13
Vậy bài toán \(ĐPCM\)