Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thanh Bình
Xem chi tiết
Nguyễn Duy Khánh
23 tháng 12 2021 lúc 20:31

thj5j6uu,tdjws54u6k67kktfjghmyluihjv,fylylfkntykmik,vghi.lrcyru7kyuukk,thhkhjhli,ydryt,jj/kl/bmmfjkjfykulukl;;gcgyfulklllliokl;huyuyolfykyu,yjmgfulip'[,ucszdxfddfjhgiihbikiktjrhkmb itrhjpowrekgpowjrgkfjb bkthn bb tkif tjotrjowjerkrwh hokfb nrthmgbhlojktihkinhnmkthknth bggntnth erkjrrh bjthknthhm mhtjk[[2krgnnhrbgkprgknnghn233ikjjtnfirgignkefmkjnfn42ij4iu4ihjtre4uh3r3kj3irug3r3fioh342fiighf43hufg3u2hf32ouhf`ui2o3hf`iu2hfuh23uh23iuhu3hfu2h3ih2ih3fihi13ihf32[-23rjfbn2p1o3b hh3og4hu413t3tuiuuyfpou]hojhdhgycuy;9890y[pkohhvb

Khách vãng lai đã xóa
Nguyễn Thị Thanh Bình
Xem chi tiết
mimi
Xem chi tiết
Khánh Vy
15 tháng 10 2018 lúc 13:28

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

Nguyễn Minh Quang
Xem chi tiết
VICTORY_Trần Thạch Thảo
Xem chi tiết
0o0_ Nguyễn Xuân Sáng _0...
7 tháng 7 2016 lúc 20:05

 Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 
Đó là cách làm của mình có j không ổn mọi người bổ sung giúp mình nhé. Chúc bạn học giỏi!

nangcongchuabuongbinh
9 tháng 11 2017 lúc 20:34

bai nay de ma dau co kho gi dau 

hoaan
Xem chi tiết
ST
13 tháng 7 2018 lúc 21:16

Gọi số chính phương là \(n^2\left(n\in N\right)\)

-Xét \(n=3k\left(k\in N\right)\Rightarrow n^2=\left(3k\right)^2=9k^2\) chia 3 dư 0

-Xét \(n=3k+1\left(k\in N\right)\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1

-Xét \(n=3k+2\left(k\in N\right)\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4\) chia 3 dư 1

Vậy...

Dương Lam Hàng
13 tháng 7 2018 lúc 21:18

Gọi số chính phương đó có dạng là a2 (a thuộc N)

Nếu a chia hết cho 3 thì a2 cũng chia hết cho 3

Nếu a = 3k+1 (k thuộc N) thì a2=9k2+6k+1 chia cho 3 dư 1

Nếu a = 3k+2 (k thuộc N) thì a2 = 9k2+12k+4 chia cho 3 dư 1

Vậy a2 chia cho 3 dư 1 hoặc 0

=> đpcm (Một số chính phương chia cho 3 chỉ có dư là 1 hoặc 0)

Nhật Linh Nguyễn
13 tháng 7 2018 lúc 21:20

Gọi số chính phương đó là m ( m là số tự nhiên ) .cho 3 thì m2

Do đó m  chia cho 3 có 3 khả năng về số dư : 0 , 1 ,2 .

+) Nếu m chia hết cho 3 thì m chia hết cho 3 nên m2 chia cho 3 dư 0

+) Nếu m  không chia hết cho 3 thì có 2 khả năng về số dư : 1 ,2 .

+) Nếu m chia cho 3 dư 1 thì :

         m = 3k + 1 .

=> m2 = ( 3k + 1 ) . ( 3k + 1 ) 

          = 9k2 + 6k + 1 .

         = 3 . ( 3k2 + 2k ) + 1 .

 => m chia cho 3 dư 1 .

+) Nếu m chia cho 3 dư 2 thì :

=> m = 3k + 2 

=> m= ( 3k + 2 ) . ( 3k + 2 )

          = 9k2 + 12k + 4 .

          = 3 . ( 3k2 + 4k + 1 ) + 1 

=> m2 chia 3 dư 1 .

Vậy bài toán đươc chứng minh .

nghiêm hữu hưng
Xem chi tiết
KAl(SO4)2·12H2O
22 tháng 11 2017 lúc 21:12

 Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1

Việc còn lại là của bạn

Nguyễn Anh Quân
22 tháng 11 2017 lúc 21:13

Gọi số đó có dạng : a^2 (a thuộc N)

Nếu a chia hết cho 3 => a^2 chia hết cho 3

Nếu a=3k+1 (k thuộc N) => a^2 = 9k^2+6k+1 chia 3 dư 1

Nếu a=3k+2 thì a^2 = 9k^2+12k +4 chia 3 dư 1

Vậy a^2 chia 3 dư 0 hoặc 1

Nếu a =2q ( q thuộc N ) => a^2 = 4q^2 chia hết cho 4

Nếu a=2q+1 thì a^2 = 4q^2+4q+1 chia 4 dư 1

Vậy a^2 chia 4 dư 0 hoặc 1

=> ĐPCM

k mk nha

nghiêm hữu hưng
23 tháng 11 2017 lúc 22:18

cảm ơn bạn nha

Nhữ Việt Hằng
Xem chi tiết
Đinh Tuấn Việt
25 tháng 10 2015 lúc 20:47

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
Cần chứng minh a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 

Hậu Duệ Mặt Trời
Xem chi tiết
hieu doanduc
24 tháng 2 2017 lúc 20:24

quy luật cho sẵn rồi bạn ơi

Phùng Quốc Đạt
24 tháng 2 2017 lúc 20:37

1 số tự nhiên sẽ có dạng 2k hoặc 2k+1

xét trường hợp 2k ta có 2k\(^2\)=4k\(^2\) chia hết cho 4

                       2k+1 ta có (2k+1)\(^2\) =4k\(^2\)+4k+1 chia 4 dư 1