Chứng minh rằng tồn tại vô số số nguyên dương a sao cho Z=n4+a không là số nguyên tố ∀n ∈ N*
chứng minh tồn tại vô số nguyên dương a sao cho z=n^4+a là 1 sos nguyên tố với mọi n thuộc Z*
cmr tồn tại vô số số nguyên dương a sao cho số z = n^4 +a không phải là số nguyên tố
Một số nguyên dương n được gọi là "số đẹp" nếu tồn tại các số nguyên dương a, b, c, d sao cho \(n=\frac{2015a^4+b^4}{2015c^4+d^4}\).
a) Chứng minh rằng có vô số "số đẹp".
b) Số 2014 có là "số đẹp" hay không?
Chứng minh rằng tồn tại vô số số nguyên dương n sao cho ước nguyên tố lớn nhất của n2 + 1 lớn hơn 2n
Nhờ các bạn và anh chị quản lí giúp e.
Với n= 3 , ,chọn x3 =y3 =1
Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp
\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),
\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)
Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\))
\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)
Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm
Cho A là một số nguyên dương thỏa gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. Chứng minh rằng không tồn tại hai số nguyên dương a và n sao cho A=an
giả sử n là số nguyên dương sao cho tồn tại các số nguyên dương a,b,c thoả mã ab+a^2c+b^2c+abc^2=101^n. chứng minh rằng n là số chẵn
Chứng minh rằng không tồn tại các số nguyên dương m,n,p với p là số nguyên tố thỏa mãn m2019+n2019=p2019
Chứng minh rằng không tồn tại 5 số nguyên dương phân biệt sao cho tổng ba số bất kì trong chúng là một số nguyên tố.
(Modulo 3, nha bạn.)
Giả sử tồn tại 5 số thoả đề.
Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:
1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
Khi đó, tổng 3 số này chia hết cho 3 (vô lí).
2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.
Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).
Vậy điều giả sử là sai.
cho p là số nguyên tố lẻ. \(Q\left(x\right)=\left(p-1\right)x^p-x-1\). Chứng minh rằng tồn tại vô số a nguyên dương sao cho Q(a) chia hết cho \(p^p\)