Tinh tong : \(1\frac{1}{2}+1\frac{1}{3}+1\frac{1}{4}+...+1\frac{1}{2014}\)
cho phan thuc A = \(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2014}+\frac{1}{2015}}\)
Tinh gia tri cua phan thuc
tinh tong A+\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3+4}+...\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
de thui
nhung ma bai nay dai qua
luc ranh mk lam cho
nha@@@@
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+...+\frac{1}{19}.\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)
\(\frac{1}{1\cdot2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)\(..........\)
Vay A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{1}-\frac{1}{20}\)
\(A=\frac{19}{20}\)
tinh A+B
A=\(\frac{1}{2}+\frac{1}{3}+......+\frac{1}{100}\)
B=1- \(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
Tinh cac tong sau
\(H=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(I=\frac{4}{5}+\frac{4}{5^2}+\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}+\frac{1}{2017}\)
va B=\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+......+\frac{2}{2015}+\frac{1}{2016}\)
Tinh ti so \(\frac{A}{B}\)
Cho \(C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........-\frac{1}{2014}\)va \(D=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+........+\frac{1}{2014}\)tinh \(\left(\frac{C}{D}\right)^{2015}\)
A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+.....+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2014}+\frac{1}{2015}}\)=
Xét Tử số của A ta có:
\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)
\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)
\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)
toán lớp 8 dễ quá vậy
A=2015
hình như thế
\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+\frac{2011}{4}+\frac{2010}{5}+....+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{2014}+\frac{1}{2015}}\)
Trình bày tự luận giúp mình nha !
Khẩn cấp đó
ở tử số ta làm thế này
\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)
\(\frac{TS}{MS}=2015\)
\(y=\frac{1}{1^4+1^2+1}+\frac{1}{2^4+2^2+1}+\frac{1}{3^4+3^2+1}+............+\frac{2014}{2014^4+2014^2+1}\)