Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Na Bong Pé Con
Xem chi tiết
TFboys_Lê Phương Thảo
3 tháng 6 2016 lúc 10:43

Ta có :a+b=c+d

\(\Rightarrow\) a=c+d-b  

Thay vào ab+1=cd  

\(\Rightarrow\) (c+d-b)*b+1=cd  

\(\Leftrightarrow\)cb+db-cd+1-b2=0  

\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0  

\(\Leftrightarrow\) (b-d)(c-b)=-1  

Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên  

Mà (b-d)(c-b)=-1 nên có 2 trường hợp  

TH1: b-d=-1 và c-b=1  

\(\Leftrightarrow\) d=b+1 và c=b+1  

\(\Rightarrow\) c=d  (1)

TH2: b-d=1 và c-b=-1  

\(\Leftrightarrow\) d=b-1 và c=b-1  

\(\Rightarrow\) c=d   (2)

Vậy từ (1) và (2) ta có c=d.

bùi mai huyền
Xem chi tiết
Bảo Bình _ Aquarius
Xem chi tiết
phạm thị kim yến
13 tháng 8 2018 lúc 7:56

  a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

huy phạm
Xem chi tiết
tran tien dat
Xem chi tiết
Trịnh Thị Nhung
8 tháng 7 2017 lúc 11:06

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

Băng băng
8 tháng 7 2017 lúc 11:13

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

trần huyền
Xem chi tiết
Trâm Lê
21 tháng 7 2015 lúc 20:39

a+b = c+d => a = c+d-b 
Thay vào ab+1 = cd 
=> (c+d-b).b+1 = cd 
<=> cb+db-cd+1-b2 = 0 
<=> b(c-b)-d(c-b)+1 = 0 
<=> (b-d)(c-b) = -1 
a,b,c,d,nguyên nên b-d và c-b nguyên 
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp: 
TH1: b-d = -1 và c-b = 1 
<=> d = b+1 và c = b+1 
=> c = d 
TH2: b-d = 1 và c-b = -1 
<=> d = b-1 và c = b-1 
=> c = d 
Vậy c = d.

Nguyễn Khắc Quang
Xem chi tiết
Đào Thanh Huyền
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết