Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Ngọc Minh Hiếu
Xem chi tiết
Gemini of 6a2
1 tháng 3 2016 lúc 17:04

Đặt x/2=y/3=k

Suy ra: x=2k; y=3k

Thay vào biểu thức A ta được:

A=13[2k-(2.3k)]/2.2k+3.3k

A=13(2k-6k)/4k+9k

A=13(-4k)/13k

A=-4k/k

A=-4

Gemini of 6a2
1 tháng 3 2016 lúc 16:57

                                                          Bài làm:

Đặt x/2=y/3=k

Suy ra: x=2k; y=3k

Thay x=2k; y=3k vào biểu thức A ta được:

A=13.[2k-(2.3k)]/2.2k+3.3k

A=13(2k-6k)/4k+9k

A=13.(-4k)/13k

A=-4k/k

A=-4

Gemini of 6a2
1 tháng 3 2016 lúc 17:03

Đặt x/2=y/3=k

Suy ra: x=2k; y=3k

Thay vào biểu thức A ta được:

A=13[2k-(2.3k)]/2.2k+3.3k

A=13(2k-6k)/4k+9k

A=13(-4k)/13k

A=-4k/k

A=-4

Hoàng Ninh
Xem chi tiết
Lê Tài Bảo Châu
30 tháng 11 2019 lúc 19:12

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

Khách vãng lai đã xóa
Nguyễn Minh Thư
Xem chi tiết
My Love
Xem chi tiết
miko hậu đậu
Xem chi tiết
Miu miu
Xem chi tiết
Nguyễn Văn Hiếu
21 tháng 3 2016 lúc 21:00

1-\(\frac{z}{x}\)=\(\frac{x}{x}-\frac{z}{x}\)=\(\frac{x-z}{x}\)=\(\frac{y}{x}\)

1-\(\frac{x}{z}=\frac{z}{z}-\frac{x}{z}=\frac{z-x}{z}=\frac{y}{z}\)

1+\(\frac{y}{z}=\frac{z}{z}+\frac{y}{z}=\frac{z+y}{z}=\frac{-x}{z}\)

ròi nhân các kết quả lại

Nguyễn Văn Hiếu
20 tháng 3 2016 lúc 21:39

\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}-1\)

vừa nãy mik nhầm

nguyen thuy hang
20 tháng 3 2016 lúc 22:05

ket qua la 1 dung ko a

trần xuân quyến
Xem chi tiết
Phác Trí Nghiên
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết