Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Thanh Ngân
Xem chi tiết
truong thi thuy linh
Xem chi tiết
Vương Thị Diễm Quỳnh
20 tháng 11 2015 lúc 7:00

1)

gọi ba số tự nhiên liên tiếp là a;a+1;a+2

ta có :

a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3

=>dpcm

2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4

ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5

=>dpcm

Noridomotoji Katori
20 tháng 11 2015 lúc 7:06

Câu hỏi tương tự.

 

Thanh Ngân Võ
Xem chi tiết
Rinne Tsujikubo
24 tháng 2 2016 lúc 17:27

vi p la so nguyen to nen p khong chia het cho 3 

=>p=2k+1 hoac 2k+2

- xet p=2k+1 thi 8p+1=8(2k+1)+1

                                =16k+8+1

                                = 16k+10

                                = 2(8k+5)

vi 2 chia het cho 2 nen 2(8k+8)  chia het cho 2

=>8p+1 la hop so.vo li

=>p khac 2k+1

- xet p=2k+2 thi 4p+1=4(2k+2)+1

                                = 8k+8+1

                                =8k+10

                                 =2(4k+5)

vi 2 chia het cho 2 nen 2(4k+5) chia het cho 2

=>4p+1 la hop so

vay 4p+1 la hop so

Vu Nguyen Bao Ngoc
Xem chi tiết
Ngô Văn Phương
25 tháng 12 2014 lúc 9:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

Phạm Văn Toản
6 tháng 4 2016 lúc 11:33

phuong ne 3(k+1)sao la so nguyen to duoc

dào văn doa
1 tháng 1 lúc 15:31

p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p=3k+1;3k+2

xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3

=>p+2 là hợp số(Vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3;2)=1=>p+1 chia hết cho 6

=>đpcm

Nguyễn Đức Nhật Minh
Xem chi tiết
Ngoc Bich
Xem chi tiết
Đặng Thị Hoàng Ngân
Xem chi tiết
hoshimiya ichigo
7 tháng 1 2018 lúc 16:11

+) Với p=2 thì p= 2+2=4    LÀ HỢP SỐ

                       p=2+4=6     LÀ HỢP SỐ

vậy p=2 loại

+) Với p=3 thì p= 3+2 = 5 là số nguyên tố

                            3+4=7    là số nguyên tố

Vậy p=3 nhận

+) Với p<3 thì p=3k+1 hoặc 3k+2

TH1: p=3k+1 thì p=3k+ 1+ 2=3k+3 chia hết cho 3 và <3 nên p+2 là hợp số

vậy p=3k+ 1 loại

TH2: p=3k+ 2 thì p=3k+2+2=3k+ 4 chia hết cho 2 và <3 nên p+ 2  là hợp số

vậy p=3k+ 2 loại

vậy p = 3 thì p+2 và p+4 là các số nguyên tố

Nguyen Thi Lan
Xem chi tiết
ST
3 tháng 6 2017 lúc 19:35

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)

- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6  \(⋮\) 3 là hợp số (loại)

- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)

=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)

ST
3 tháng 6 2017 lúc 19:36

sửa dòng cuối: 21k + 15 \(⋮\)3 là hợp số (đpcm)

nguyễn anh minh
19 tháng 12 2017 lúc 20:07

mk bổ sung cho st là nếu 15k+11 có thể : 11 khi k =11

Zz Victor_Quỳnh_Lê zZ
Xem chi tiết
Toi da tro lai va te hai...
28 tháng 3 2016 lúc 21:31

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 

nhầm đề , đây là bài đúng ! ^.^

Toi da tro lai va te hai...
28 tháng 3 2016 lúc 21:30

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 
2/ Đặt Q(x)=P(x)-(x+1) 
Q(1999)=P(1999)-(1999+1)=2000-2000=0 
Q(2000)=P(2000)-(2000+1)=2001-2001=0 
=>x-1999,x-2000 là các nghiệm của Q(x) 
Đặt Q(x)=(x-1999)(x-2000).g(x) 
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1) 
=>Q(x) =(x-1999)(x-2000).( ax+b) 
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1) 
P(2001)=(2001-1999)(2001-2000) 
(a.2001+b)+(2001+1) 
=2(2001a+b)+2002 
=4002a+2b+2002 
P(1998)= (1998-1999)(1998-2000)(a.1998+b) 
+(1998+1) 
=2(a.1998+b)+1999 
=3996a+2b+1999 
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999 
=6a+3 
=3(a+2) 
Do a thuộc Z,a khác -1 
=>a+2 thuộc Z,a+2 khác 1 
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3 
=>3(a+2) là hợp số 
=> P(2001) - P(1998) là hợp số