Tìm điều kiện của các biến để các phân thức sau có nghĩa 3 x 2 - 9 y 2
Tìm điều kiện của các biến để các phân thức sau có nghĩa - 5 3 x x - 1 - 2
Tìm điều kiện của các biến để các phân thức sau có nghĩa 2 x 2 + x - 3 x 2 + 5 x + 4
Để phân thức có nghĩa:
x 2 + 5 x + 4 ≠ 0
⇔ (x + 4)(x + 1) ≠ 0
⇔ x ≠ -4, x ≠ -1
Vậy điều kiện để phân thức xác định là x ≠ -4 và x ≠ -1
Tìm điều kiện của x để các biểu thức sau có nghĩa và biến đổi chúng về dạng tích: 3 x + 3 + x 2 - 9
Tìm điều kiện của các biến để các phân thức sau có nghĩa - 5 x + 2 3 x + 2 2 x - 1 - 1
Để phân thức xác định ta có: có nghĩa:
Vậy với x ≠ -3 và x ≠ ½ thì phân thức đã cho được xác định
Tìm điều kiện của các biến để các phân thức sau có nghĩa 3 x - 5 x - 2 2 x
Tìm điều kiện của các biến để các phân thức sau có nghĩa 5 x 2 25 x 2 - 10 x y + y 2
Tìm điều kiện của các biến để các phân thức sau có nghĩa x 2 + 3 x 2 + 3 x - 4
Để phân thức có nghĩa:
x 2 + 3 x – 4 ≠ 0
⇔ (x + 4)(x – 1) ≠ 0
⇔ x ≠ -4 và x ≠ 1
Vậy điều kiện để phân thức có nghĩa là x ≠ - 4 và x ≠ 1
Tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu thức chung của chúng:
b, x / 4 + 2a , y / 4 - 2a , z / 4 - a^2
\(\dfrac{x}{4+2a}\) có nghĩa khi \(a\ne-2\)
\(\dfrac{y}{4-2a}\)có nghĩa khi \(a\ne2\)
\(\dfrac{z}{4-a^2}\)có nghĩa khi \(a\ne\pm2\)
MTC: \(2\left(2+a\right)\left(2-a\right)\)
Tìm điều kiện của các biến trong mỗi phân thức sau đây. Chứng minh rằng khi giá trị của phân thức xác định thì giá trị đó không phụ thuộc vào các biến x và y (nghĩa là chứng tỏ rằng có thể biến đổi phân thức đã cho thành một biểu thức không chứa x và y)
2 a x - 2 x - 3 y + 3 a y 4 a x + 6 x + 9 y + 6 a y (a là hằng số khác - 3/2
xác định khi 4ax + 6x + 9y + 6ay ≠ 0
⇒ 2x(2a + 3) + 3y(2a + 3) = (2a + 3)(2x + 3y) ≠ 0
Ta có: 2a + 3 ≠ 0 ⇒ a ≠ - 3/2 ; 2x + 3y ≠ 0 ⇒ x ≠ - 3/2 y
Điều kiện: x ≠ - 3/2 y và a ≠ - 3/2
Vậy biểu thức không phụ thuộc vào x, y.