Cho △ABC vuông tại A, góc ABC = 60.BC = 2a. Gọi M là trung điểm của BC, d là đường thẳng qua M và vuông góc với BC. Trên d lấy E phía ngoài △ABC sao cho EM=AB.( chỉ cần vẽ hình thôi )
Cho △ABC vuông tại A, góc ABC=60.BC=2a. Gọi M là trung điểm của BC, d là đường thẳng qua M và vuông góc với BC. Trên d lấy E phía ngoài tam giác ABC sao cho EM=AB. Chứng minh △BCE vuông.
Cho tam giác ABC có AB = AC. Trên đường thẳng vuông góc với AC tại C lấy điểm D sao cho hai điểm B, D nằm khác phía đối với đường thẳng AC. Gọi K là giao điểm của đường thẳng qua B vuông góc với AB và đường thẳng qua trung điểm M của CD và vuông góc với AD. Chứng minh KB = KD.
Cho tam giác ABC có AB = AC. Trên đường thẳng vuông góc với AC tại C lấy điểm D sao cho hai điểm B, D nằm khác phía đối với đường thẳng AC. Gọi K là giao điểm của đường thẳng qua B vuông góc với AB và đường thẳng qua trung điểm M của CD và vuông góc với AD. Chứng minh KB = KD.
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Where is " Thiên Tài " ?
Cho tam giác ABC có AB = AC. Trên đường thẳng vuông góc với AC tại C lấy điểm D sao cho hai điểm B, D nằm khác phía đối với đường thẳng AC. Gọi K là giao điểm của đường thẳng qua B vuông góc với AB và đường thẳng qua trung điểm M của CD và vuông góc với AD. Chứng minh KB = KD.
Nguyễn Mạnh Đức ko biết làm thì câm mồm vào ik
Xin lỗi nha. Đằng này mới học lớp 5 thôi
Cho tam giác ABC, I là trung điểm của BC. Đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D. Trên tia đối của tai ID lấy điểm E sao cho IE=ID. Gọi H là giao điểm của CE và AB. Chứng minh rằng: tam giác AHC là tam giác vuông.
Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)
=> Tam giác CIE = Tam giác BID (c.g.c)
^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong
=> CE//BD hay BD//CH. Mà BD vuông góc với AB
=> CH vuông góc với AB (Quan hệ //, vg góc)
=> Tam giác AHC vuông tại H (đpcm).
Cho tam giác ABC , I là trung điểm của BC , đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D . Trên tia đối của tia ID , lấy điểm E sao cho IE bằng ID . Gọi H la trung điểm của CE và AB . Chứngng minh tam giác AHC là tam giác vuông
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt tại M và N.
Chứng minh rằng :
a) DM=EN
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN;
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM