Chứng tỏ: (n-1)(n+2)+12 không chia hết cho 9.
gọi A= n ^2 + n + 1 ( n thuộc N ). chứng tỏ rằng
a, A không chia hết cho 2
b, A không chia hết cho 5
a,xét n chẵn hiển nhiên A ko chia hết cho 2
n lẻ thì n^2 lẻ n lẻ
->A lẻ -> A ko chia hết cho 2
b,n^2 có tận cùng là:0,1,4,5,6,9
->n^2+n có tận cùng:0,2,8
->n^2+n+1 có tận cùng:1,3,9 ko chia hết cho 5
chan qua a!
ai kb voi mk ko
chan qua !
chuc bn hoc gioi!
nhae
Gọi A = n2 + n + 1 (n ∈ N). Chứng tỏ rằng: A không chia hết cho 2.
Ta có: n2 + n + 1 = n(n + 1) + 1
Ta có n(n + 1) ⋮ 2 vì n(n + 1) là tích của hai số tự nhiên liên tiếp.
Mà 1 không chia hết cho 2
Do đó n(n + 1) + 1 không chia hết cho 2.
Bài 1 : Chứng tỏ rằng
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho2 và 5
Bài 2 : Cho n thuộc N . Chưng tỏ rằng 5n - 1 chia hết cho 4
Bài 3 : Cho n thuộc N . Chứng tỏ rằng n2 + n + 1 không chia hết cho cả 2 và 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
chứng tỏ rằng với cùng 1 số TN n không thể có đồng thời 7n - 1 chia hết cho 4 và 5n + 3 chia hết cho 12
nhanh nha
Gọi A = n2 + n + 1 (n ∈ N). Chứng tỏ rằng: A không chia hết cho 5
Ta có: n2 + n + 1 = n(n + 1) + 1
Ta có n(n + 1) là tích của hai số tự nhiên liên tiếp nên tận cùng bằng 0, 2, 6. Suy ra n(n + 1) + 1 tận cùng bằng 1, 3, 7 nên n2 + n + 1 không chia hết cho 5.
Chứng tỏ với mọi số tự nhiên n thì tích (n+3)(n+12) chia hết cho 2
Chứng tỏ:
105 +5 chia hết cho 3 và 5
1050+44 chia hết cho 2 và 9
N x(n+1)x(n+5) chia hết cho 3 với mọi n thuộc N
a)Vì 105 chia hết cho 5 và 5 chia hết cho 5 nên 105 + 5 chia hết cho 5.
Ta có: 5 chia 3 dư 2, 105 chia 3 dư 1 ( vì có tổng các chữ số là 1 ) nên 105 + 5 chia hết cho 3.
b) Vì 1050 chia hết cho 2 và 44 chia hết cho 2 nên 1050 + 44 chia hết cho 2.
Vì 44 chia 9 dư 8 và 1050 chia 9 dư 1 ( vì có tổng các chữ số bằng 1 ) nên 1050+44 chia hết cho 9.
c) n x ( n + 1 ) x ( n + 5 ).
Nếu n chia hết cho 3 thì tích trên chia hết cho 3.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => tích trên chia hết cho 3.
Nếu n chia 3 dư 1 thì n + 5 chia hết cho 3=> tích trên chia hết cho 3.
Vậy ta có n x ( n + 1 ) x ( n + 5 ) luôn chia hết cho 3 với mọi n thuộc N.
105+5=100005
số trên có tận cùng là 5 nên chia hết cho 5
có tổng các chữ số là 6 nên chia hết cho 3
còn lại chịu tui học dốt lắm!!!
Bài 1 . Chứng tỏ rằng : ( n + 2 ) chia hết cho ( n - 2 )
đề của bạn hơi có vấn đề.Nếu n=5 thì n+2=7,n-2=3.
7 không chia hết cho 3
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn