Cho P = 1 2 2 + 1 3 2 + ... + 1 2002 2 + 1 2003 2 . Chọn câu đúng.
A. P > 1
B. P > 2
C. P < 1
D. P < 0
a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
=>2B-B=\(1-\frac{1}{2^{99}}\)
mà 1/2^99>0 nên B<1 (đpcm)
a) cho B = 1/2 + 1/2^2 + 1/2^3 +....+1/2^99. só sánh B với 1
b) cho C = 1/3 +(1/3)^2 + (1/3)^2 + (1/3)^3 + ..... + (1/3)^99. CMR C<1/2
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+3+3+3+3+3+3=?
help me
ai nhanh mik tic cho!
1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+3+3+3+3+3+3= 42
Bài 8; Cho B=1/2+1/3^2+1/3^3+...+1/3^n
C/M B < 1/2
Bài 9; Cho A= (1/2^2-1)*(1/3^2-1)*(1/4^2)*...*(1/100^2-1)
a) Cho A=1 phần 2+(1 phần 2)^2+(1 phần 2)^3+...+(1 phần 2)^99
CMR:A<1
b) Cho B=1 phần 3 + (1 phần 3^2) + (1 phần 3^3) + ... + (1 phần 3^99)
CMR:B<1 phần 2
a, \(A=\frac{1}{2}+\left[\frac{1}{2}\right]^2+\left[\frac{1}{2}\right]^3+...+\left[\frac{1}{2}\right]^{99}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right]\)
\(A=1-\frac{1}{2^{99}}\)
Do đó A < 1
b, \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(3B-B=\left[1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]-\left[1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right]\)
\(2B=1-\frac{1}{3^{99}}\)
\(B=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
cho B= 1/2+ 1/22 +1/23+........+1/299. So sánh B với 1
cho C= 1/3+ ( 1/3)2+(1/3)2+..........+ (1/3)99. CMR C< 1/2
Cho dãy phân số sau đây:
1/1, 2/1, 1/2, 3/1, 2/2, 1/3, 4/1, 3/2, 2/3, 1/4, 5/1, 4/2, 3/3, ...
đề bài hỏi gì
Cho dãy số 1/1 ; 1/2 ; 2/1 ; 1/3 ; 2/2 ; 3/1 ; 1/4 ; 2/3 ; 3/2 ; 4/1 ; 1/5 ; 2/4 ; 3/3 ; 4/2 ; 5/1 ; 1/6 ; 2/5 ; 3/4...
Tìm số thứ 2013