Cho ∆ A B C = ∆ M N P , AB = 6 cm, BC = 8 cm, MP = 10 cm.
Tính chu vi của mỗi tam giác trên
a)cho tam giác ABC=DEF.biết A=32 độ,F=78 độ.tính các góc còn lại của mỗi tam giác
b)cho tam giác ABC=MNP.biết AB=5 cm,MP=7 cm và chu vi của tam giác ABC=22 cm.tính các cạnh còn lại của mỗi tam giác
à làm thêm câu b):
Vì \(\Delta\text{ABC}=\Delta\text{MNP}\)nên:
AB=MN=5cm; AC=MP=7cm và BC=NP.
Trong tam giác ABC có:
AB+BC+CA=22 (cm)
=> 5 + BC + 7 = 22
=> BC = 22 - 5 - 7
=> BC = 10 (cm)
Mà BC = NP = 10 cm
Vậy...(bạn viết tương tự nhé).
Vì \(\Delta\text{ABC}=\Delta\text{DEF}\)
=> A=D=320, C=F=780 và B=E
Trong tam giác ABC có:
A+B+C=1800
=> 320+B+780=1800
=> B = 1800 - 320 - 780
=> B = 700
Mà B=E
=> E=700
Vậy: A=D=320; B=E=700; C=F=780.
Cho ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm. a) Chứng tỏ tam giác ABC vuông tại A. b)Vẽ phân giác BM của B ( M thuộc AC), từ M vẽ MN BC ( N BC). Chứng minh MA = MN c) Tia NM cắt tia BA tại P. Chứng minh AMP = NMC rồi suy ra MP > MN
a, Ta có : BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 36 + 64 = 100
=> AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A ( Định lý Py - ta - go đảo )
Study well ! >_<
a)Xét\(\Delta ABC\)có:\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
Ta thấy:\(BC^2=AB^2+AC^2\left(=100\right)\)
\(\Rightarrow\Delta ABC\)cân tại A(Định lí Py-ta-go)
b)Xét\(\Delta MAB\)và\(\Delta MNB\)có:
MB là cạnh chung
\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)
\(\widehat{MBA}=\widehat{MBN}\)(BM là tia p/g của \(\widehat{ABN}\))
Do đó:\(\Delta MAB=\Delta MNB\)(cành huyền-góc nhọn)
\(\Rightarrow MA=MN\)(2 cạnh t/ứ)
c)Xét\(\Delta MAP\)và\(\Delta MNC\)có:
\(MA=MN\)(cmt)
\(\widehat{AMP}=\widehat{NMC}\)(2 góc đối đỉnh)
\(\widehat{MAP}=\widehat{MNC}\left(=90^o\right)\)
Do đó:\(\Delta MAP=\Delta MNC\)(cạnh gv-góc nhọn)
\(\Rightarrow MP=MC\)(2 cạnh t/ứ)
Ta có:MN<MC(ĐL mối QH giữa đường vg và đg xiên)
mà MC=MP(cmt)
\(\Rightarrow MN< MP\)hay MP>MN
Lúc nãy mik đánh nhầm căn cứ câu a bn sửa lại thành "Định lí Py-ta-go đảo" nhé!!!!
giải chi tiết nha
Bài 5: Chu vi tam giác : 54 cm . Chiều cao lần lượt là : 12 cm , 8 cm , 6 cm . Tính độ dài 3 cạnh hình tam giác
Bài 6: Cho hình chữ nhật ABCD cơ AB = 18cm và BC = 12cm. Trên AB lấy điểm M sao cho AM =- 4B và trên BC lấy điểm N sao cho BN = - BC. Tính diện tích hình tam giấc DMN.
Bài 7 : Cho tam giấc ABC cơ M nằm trên BC và MC = BC, BK là đường cao của tam giác ABC , MH là đường cao của tam giác AMC . Tính tỉ số ?
Bài 8 : Cho tam giác ABC. D là điểm chính giữa của AC. Trên AB lấy E sao cho AE = 2 x EB. Nói BD cắt CE tại G .
a) So sánh diện tích tam giác BGC và ABG ?
b) So sánh EG và CG.
Cho tam giác ABC có AB = 6 cm;BC = 10 cm;AC=8 cm
a, chứng tỏ tam giác ABC vuông tại A
b, Vẽ phân giác BM của góc B (M thuộc AC) từ M Vẽ MN vuông BC (Nthuộc BC).Chứng minh rằng MA=MN
c,Tia NM cắt tia BA tại P.Chứng minh tam giác AMP =tam giác NMC rồi suy ra MP > MN
Hình tự vẽ
a) ΔABC vuông tại A.
Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)
BC2 = 102 = 100 (cm)
Vì AB2 + BC2 = BC2 ( = 100 cm)
Nên ΔABC vuông tại A.
b) MA = MN.
Xét hai tam giác vuông ABM và NBM có:
BM: cạnh chung
∠ABM = ∠NBM (BM là phân giác của ∠ABC)
Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)
⇒ MA = MN (hai cạnh tương ứng)
c) ΔAMP = ΔNMC. MP > MN.
Xét hai tam giác vuông AMP và NMC có:
AM = MN (câu b)
∠AMP = ∠NMC (hai góc đối đỉnh)
Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)
⇒ PM = MC (hai cạnh tương ứng) (1)
Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)
Từ (1) và (2) suy ra: MP > MN
2. Cho tam giác ABC qua trung điểm M của cạnh BC, kẻ đường thẳng song song với AB cắt AC tại N. Trên tia BA lấy I sao cho BI=MN
a) CM: IM//AC
b) I,N lần lượt là trung điểm của AB,AC
c)CM: IN//BC
d)CM: tam giác ABC và tam giác MNI có 3 góc bằng nhau từng đôi một
e) Chu vi tam giác ABC gấp đôi chu vi tam giác MNI
2. Cho tam giác ABC qua trung điểm M của cạnh BC, kẻ đường thẳng song song với AB cắt AC tại N. Trên tia BA lấy I sao cho BI=MN
a) CM: IM//AC
b) I,N lần lượt là trung điểm của AB,AC
c)CM: IN//BC
d)CM: tam giác ABC và tam giác MNI có 3 góc bằng nhau từng đôi một
e) Chu vi tam giác ABC gấp đôi chu vi tam giác MNI
Cho ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b)Vẽ phân giác BM của góc B
( M thuộc AC), từ M vẽ MN BC ( N thuoocj BC).
Chứng minh MA = MN
c) Tia NM cắt tia BA tại P. Chứng minh tam giác AMP = tam giác NMC rồi suy ra MP > MN
Đang cần gấp...ko cần vẽ hình ... Vẽ thì càng tốt
a.
Xét \(\Delta ABC\) có:
\(AB^2+AC^2=6^2+8^2=100=10^2\)
Theo định lý Pythagoras đảo thì \(\Delta ABC\) vuông tại A
b.
Xét \(\Delta ABM\) và \(\Delta NBM\) có:
\(\widehat{ABM}=\widehat{NBM}\)
BM là cạnh chung
\(\widehat{BAM}=\widehat{BNM}=90^0\)
\(\Rightarrow\Delta ABM=\Delta NBM\left(ch-gn\right)\Rightarrow MA=MN\)
c.
Xét \(\Delta PAM\) và \(\Delta CNM\) có:
\(MA=MN\)
\(\widehat{PAM}=\widehat{MNC}\)
\(\widehat{AMP}=\widehat{CMN}\)
\(\Rightarrow\Delta PAM=\Delta CNM\left(g.c.g\right)\Rightarrow MN=MP\)
Do \(\Delta MNC\) vuông tại N nên \(MC>MN\left(ch>cgv\right)\)
\(\Rightarrow MP>MN\)
Cho tam giác ABC có góc A tù. Trên BC lấy D, tia đối CB lấy E sao cho BD=CE. Trên tia đối CA lấy I sao: CI=CA
a) Cm : tam giác ABC bằng tam giác EIC
b) CM : AC+AB<AD+AE
c) Vẽ DM vuông góc với BC và cắt BA tại M. Vẽ EN vuông góc với BC và cắt AI tại N. CM : BM=Cn
d) CM: Chu vi tam giác ABC= chu vi của tam giác AMN
Cho hình chữ nhật ABCD có chu vi là 52 cm, chiều dài AB hơn chiều rộng BC là 10 cm. a, Tính diện tích hình chữ nhật ABCD. b, Trên cạnh AB lấy điểm M sao cho BM = 6 cm. Biết MC = 10 cm, tính chiều cao BN của tam giác BCM. c, Kéo dài DA và CM cắt nhau tại E. Biết diện tích tam giác DEC bằng 216cm2, tính độ dài đoạnh thẳng AE.
a, Nửa chu vi của hình chữ nhật là :
52 : 2 = 26 [cm]
Chiều dài của hình chữ nhật dài số cm là :
[26 + 10] : 2 = 18 [cm]
Chiều rộng của hình chữ nhật dài số cm là :
26 - 8 = 18 [cm]
Diện tích của hình chữ nhật là :
18 x 8 = 144 [cm2]
b,Diện tích hình chữ nhật ABC là :
18 x 8 : 2 = 72 [cm2]
Độ dài đoạn thẳng MB là :
18 : 3 = 6 [cm]
Ta thấy rằng hai hình tam giác ABC và MBC có chung chiêu cao là CB và cạnh đáy MB = \(\frac{1}{3}\)AB nên diện tích hình tam giác ABC gấp 3 lần diện tích hình tam giác MBC.
Vậy diện tích hình tam giác MBC là :
72 x \(\frac{1}{3}\)= 24 [cm2]
Ta vẽ một đoạn thẳng MO vuông góc với đoạn thẳng CD tạo thành môt hình chữ nhật OMBC .
Vậy diện tích hình chữ nhật OMBC là :
8 x 6 = 48 [cm2]
Ta có : OMBC = MBC x 2 [xin các bạn hiều cái này là diện tích ]
= MC x BN : 2 x 2
= MC x BN
=> 48 = MC x BN
=> 48 = 2 x BN x BN
=> 24 =BN2
Vậy BN là căn bậc 2 của 24 nên MC bằng căn bậc 2 của 24 nhân 2. [hình như đề bài sai ấy]
c,Độ dài đoạn thẳng AM là :
18 - 6 = 12 [cm]
Diện tích hình thang AMCD là :
[12 + 18] x 8 : 2 = 120 [cm2]
Diện tích hình tam giác EAM là :
216 - 120 = 96 [cm2]
Độ dài đoạn thẳng AE là :
96 x 2 : 12 = 16 [cm]
Vậy độ dài đoạn thẳng AE là 16 cm .
phần b của cậu sai sai vì lớp 5 đã học căn bậc 2 rồi à