Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
khai112233
Xem chi tiết
hyun mau
Xem chi tiết
Trần Thị Loan
9 tháng 10 2015 lúc 21:10

\(A=\left(\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{2002-1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\left(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{2002}{2002!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\left(\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2001!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\frac{1}{1!}-\frac{1}{2002!}+\frac{1}{2002!}=1\)

 

MCthoidai
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Quỳnh Trang
16 tháng 1 2019 lúc 12:10

a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)

  \(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)

  \(=0+0+...+0=0\)

b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)

   \(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)

   \(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

   \(=\left(-4\right)\cdot501=\left(-2004\right)\)

  

TRẦN THỊ BÍCH HỒNG
Xem chi tiết
Nguyễn Linh Chi
28 tháng 10 2019 lúc 11:38

Xem bài tại link này nhé!  Bài làm đúng đã đc OLM chọn.

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Hoàng Ninh
28 tháng 10 2019 lúc 12:52

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)

Chúc em học tốt nhé!

Khách vãng lai đã xóa
TRẦN THỊ BÍCH HỒNG
28 tháng 10 2019 lúc 13:00

giúp mk bài nữa nha

Khách vãng lai đã xóa
Nguyễn Thùy Linh
Xem chi tiết
Trần Thị Loan
23 tháng 5 2015 lúc 18:08

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(A=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2001}+\frac{1}{2002}=B\)

=> A/B = 1

Nguyễn Thị Hồng Vi
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 4 2016 lúc 20:13

S=\(\left(1+\frac{1}{2}+......+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{2002}\right)\)

=\(\left(1+\frac{1}{2}+.........+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+.........+\frac{1}{1001}\right)\)

=\(\frac{1}{1002}+\frac{1}{1003}+...........+\frac{1}{2002}=P\)

\(\Rightarrow S-P=0\)

Trần Nhật Tân
Xem chi tiết