Chứng minh rằng các số n(n+1 và n(n+2) (n\(\in\)N*) không thể là số chính phương
Chứng minh rằng các số n(n + 1) và n(n + 2) (n thuộc N*) không thể là các số chính phương
Cho n Є N và n - 1 không chia hết cho 4. Chứng minh rằng 7 n + 2 không thể là số chính phương.
chứng minh rằng các số 3^n + 4 (n thuộc n) không thể là các số chính phương
làm ko bt đúng hay sai:
giả sử 3^n+4 là scp=>3^n+4=a^2
mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ
=>a có dạng 4k+1 hoặc a có dạng 4k+3
+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1
+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1
vậy a^2=8m+1(1)
mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)
nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)
vậy 3^n+4 ko thể là scp
3n + 4 và số nào không thể cùng là các số CP
chứng minh rằng A= n^4+2*n^3+2*n^2+2*n+1 không thể là số chính phương với n là số tự nhiên
Chứng minh rằng các số 3n + 4 (n thuộc N) không thể là các số chính phương
vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ
Biết n! = 1.2.3.4.....n với n thuộc N*
Chứng minh rằng 1! + 2! + 3! + .....+ 2014! không thể là số chính phương
1. Viết các số tự nhiên từ 50 đến 100 liên tiếp nhau và thu được số 505152...9899100. Hỏi số này có là số chính phương không?
2. Cho n \(\in\)N (n-1 không chia hết cho 4). Chứng minh rằng \(7^{n+2}\)không là số chính phương
3. Cho A= 19\(n^6\)+ 5\(n^5\)+1890\(n^3\)-19\(n^2\)-5n+1993. CHứng minh rằng A không phải là số chính phương
chua chac tan cung la cac so do da la so chinh phuong
Chứng minh rằng \(13^n.2+7^n.5+26\)không thể là số chính phương với \(n\in N\)
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.