Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Duc
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 7 2019 lúc 7:34

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)

\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)

\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

Vay.....

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)

Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)

Vì là nghiệm nguyên dương nên:

\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc     \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\)         hoặc     \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)           hoặc      \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)

Vậy các cặp số (x;y) là: (1;8);(2;6)

Nguyen Vi Trai
Xem chi tiết
Lê Khánh Phương
Xem chi tiết
Diễm Quỳnh Phan Thị
Xem chi tiết
Dương Tuấn Minh
Xem chi tiết
Âu Dương Thiên Vy
26 tháng 2 2018 lúc 22:45

\(2xy-6=4x-y\Leftrightarrow2xy-4x+y-2=4\)

\(\Leftrightarrow2x\left(y-2\right)+\left(y-2\right)=4\Leftrightarrow\left(y-2\right)\left(2x+1\right)=4\)(1)

Có \(x,y\inℤ\Rightarrow\hept{\begin{cases}2x+1\inℤ\\y-2\inℤ\end{cases}}\)

Từ (1) =>  2x + 1 thuộc Ư(4) ; y - 2 thuộc Ư(4)

+) \(\hept{\begin{cases}2x+1=1\\y-2=4\end{cases}}\)                              +) \(\hept{\begin{cases}2x+1=2\\y-x=2\end{cases}}\)

+) \(\hept{\begin{cases}2x+1=4\\y-2=1\end{cases}}\)                                +) \(\hept{\begin{cases}2x+1=-2\\y-2=-2\end{cases}}\)

+) \(\hept{\begin{cases}2x+1=-1\\y-2=-4\end{cases}}\)                          +) \(\hept{\begin{cases}2x+1=-4\\y-2=-1\end{cases}}\)

Còn lại rất dễ bạn tự làm tiếp nhé 

Chú ý điều kiện x ; y nguyên nhé !!!! 

Tích cho mk nhoa !!!!! ~~

Harry Potter
Xem chi tiết
Bạch Dạ Y
Xem chi tiết
Super Star 6a
3 tháng 10 2021 lúc 22:54

ủa ko có nghiệm ? 

Khách vãng lai đã xóa
Bạch Dạ Y
3 tháng 10 2021 lúc 22:56

mình chép đề bài đúng rồi nha bạn , mình cũng đang nghi là vô nghiệm đây nhưng vẫn đăng hỏi thử

Khách vãng lai đã xóa
Super Star 6a
3 tháng 10 2021 lúc 22:58

\(\left(x+1\right)^2=13-\frac{3}{2}y^2\)   lẻ thế này thì s có nghiệm nguyên được ?

Khách vãng lai đã xóa
Harry Potter
Xem chi tiết
Harry Potter
9 tháng 3 2021 lúc 15:33

4xy-6y+4x nhé

Khách vãng lai đã xóa
phungminhanh
9 tháng 3 2021 lúc 15:51

4xy-6y+4x

Khách vãng lai đã xóa
Harry Potter
9 tháng 3 2021 lúc 18:14

4xy-6y+4x=16

Khách vãng lai đã xóa
Trần Thanh Trà
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha