Chứng minh rằng với mọi số tự nhiên n và n > 1 thì 5 mũ 2n +2 có chữ số tận cùng là 7
Chứng minh rằng với mọi số tự nhiên n và n lớn hơn 1 thì 5 mũ 2n +2 có chữ số tận cùng là 7
TẤT CẢ CÁC SỐ \(5^n\)ĐỀU CÓ TẬN CÙNG LÀ 5 THÌ 5+2 = 7
1,Chứng minh n^6+n^4-2n^2 chia hết cho 72?
2,CMR: 3^(2n) - 9 chia hết cho 72?
3,chứng minh rằng với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau
4, Chứng minh rằng mọi số nguyên tố p>3 thì p2-1 chia hết cho 24
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
chứng minh rằng với mọi số tự nhiên n thì 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì n5 và n lun có chữ số tận cùng giống nhau
Giải
Ta có:n5 - n = n(n4 - 1)
= n(n2 - 1)(n2 - 4 + 5)
= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)
= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)
Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)
Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n - 1)n(n + 1) chia hết cho 10 (2)
Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.
Vậy n5 và n luôn có chữ số tận cùng giống nhau.\(\left(đpcm\right)\)
chứng minh rằng với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau
gọi chữ số tận cùng của 7n là:a
ta có:7n+4=7n.74=(...a).2401=...a
=>đpcm
B1 Chứng minh rằng với mọi số tự nhiên a và n
a) a và a5 có chữ số tận cùng như nhau
b) an và an+4 có chữ số tận cùng như nhau ( \(n\ge1\))
B2 : Chứng minh rằng n6 + n4 - 2n2 \(⋮\)72 với mọi số nguyên n
Chứng minh rằng n5 và n có chữ số tận cùng giống nhau với mọi n là số tự nhiên.
A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1)
* n(n +1) chia hết cho 2 => A chia hết cho 2.
*cm: A chia hết cho 5.
n chia hết cho 5 => A chia hết cho 5.
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4)
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5
=> A luôn chia hết cho 5
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0
=> đpcm
Nói trước mình copy
n^5-n=n(n^4-1)=n(n²-1)(n²-4+5)
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a)
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10
( vì (2,5)=1) (b)
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c)
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm)
A = n^5 ‐ n = n﴾n^4‐1﴿ = n﴾n^2 +1﴿﴾n^2 ‐1﴿ =n﴾n^2 +1﴿﴾n+1﴿﴾n‐1﴿
* n﴾n +1﴿ chia hết cho 2 => A chia hết cho 2.
*cm: A chia hết cho 5. n chia hết cho 5 => A chia hết cho 5.
n không chia hết cho 5 => n = 5k + r ﴾với r =1,2,3,4﴿
‐ r = 1 => n ‐ 1 = 5k chia hết cho 5 => A chia hết cho 5
‐ r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5
‐ r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5
‐ r = 4 => n +1 = 5k + 5 chia hết cho 5
=> A chia hết cho 5
=> A luôn chia hết cho 5
2,5 nguyên tố cùng nhau
=> A chia hết cho 2.5=10
=> A tận cùng là 0
mà A=n^5-n
nên n^5 và n phải có chữ số tận cùng giống nhau
=>dpcm
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Chứng minh rằng với mọi n là số tự nhiên thì :
2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau .