tìm gía trị lớn nhất của
D=\(\frac{x}{\left(x+2004\right)^2}\)
Tìm giá trị lớn nhất của biểu thức: \(\frac{x+2003}{\left(x+2004\right)^2}\)
Gọi biểu thức đó là \(K=\frac{x+2003}{\left(x+2004\right)^2}\)
Đặt \(x+2003=k_0\)
Lúc đó \(K=\frac{k_0}{\left(k_0+1\right)^2}=\frac{\left(k_0^2+2k_0+1\right)-\left(k_0^2+k_0+1\right)}{k_0^2+2k_0+1}\)
\(=1-\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)
Để K đạt GTLN thì \(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)đạt GTNN
Đặt \(k_1=k_0+1\Rightarrow k_0=k_1-1\)
\(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}=\frac{\left(k_1-1\right)^2+\left(k_1-1\right)+1}{k_1^2}\)
\(=\frac{k_1^2-k_1+1}{k_1^2}=\frac{1}{k_1^2}-\frac{1}{k_1}+1\)
Đặt \(\frac{1}{k_1}=k_2\)thì có \(K=k_2^2-k_2+1=\left(k_2-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
(Dấu "=" xảy ra khi \(k_2=\frac{1}{2}\Rightarrow k_1=2\Rightarrow k_0=1\Rightarrow x=-2002\))
Vậy \(K_{max}=\frac{1}{4}\Leftrightarrow x=-2002\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.tìm giá trị lớn nhất cua bt
D=\(\frac{x}{\left(x+2004\right)^2}\)
Co: D lon nhat<=>x/(x+2004)2 lon nhat
<=> (x2+4008x+20042)/x nho nhat
<=> x+4008+20042/x nho nhat
<=>(x+20042/x) + 4008 nho nhat
<=>(x2+20042)/x + 4008 nho nhat
Ta chung minh duoc bai toan phu: a2+b2>= 2ab( chuyen sang duoc: (a-b)^2>=0 - luon dung)
Dau"=" xay ra <=> a=b
=> x2+20042>=4008x
=>(x2+20042)/x>=4008
=> (x2+20042)/x + 4008 >=8016
Dat (x2+20042)/x + 4008=A
Min A= 8016<=> x= 2004
=> Min D= 1/8016 <=> x= 2004
Bai nay can them dieu kien laf x khac 0 thi moi lam theo nhu the nay duoc. Cos j tick minh nhe!
tìm giá trị lớn nhất của B=\(\frac{\left|x\right|+2004}{-2005}\)????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Vì IxI\(\ge\) 0
\(\Rightarrow\)IxI + 2004\(\ge\) 2004
\(\Rightarrow\frac{Ix+2004I}{-2005}\le\frac{2004}{-2005}\)
Dấu bằng xảy ra khi x = 0
Vậy GTLN của B là\(\frac{2004}{-2005}\) khi x=0
Gía trị của x để biểu thức E =\(2+\frac{3}{\left|7x+5\right|+4}\)đạt giá trị lớn nhất là x = ?
Để E đạt GTLN thì \(\left|7x+5\right|\ge0\) với \(\forall x\in R\)nên
\(\left|7x+5\right|+4\ge0+4=4\)
\(\Rightarrow E=2+\frac{3}{\left|7x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)
Dấu ''='' xảy ra khi \(\left|7x+5\right|=0\Leftrightarrow x=-\frac{5}{7}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của :
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\) ; E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
HELP ME!
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của :
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
HELP ME!
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của :
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
HELP ME!
tiếp tục nạ !!!
Cho biểu thức \(y=\frac{x}{\left(x+2004\right)^2}x\ne0\)
Tìm x để giá trị biểu thức lớn nhất .Tìm giá trị đó
Đặt \(t=\frac{1}{2004y}\)
Bài toán đưa về tìm x để t bé nhất
Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}\)
\(=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\)(1)
Ta thấy : Theo bất đẳng thức Côsi cho 2 số nguyên dương ta có :
\(x^2+2004^2\ge2.2004.x\)
\(\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\)(2)
Dấu ''='' xảy ra khi x=2004
Từ (1) và (2) \(\Rightarrow t\ge4\)
Vậy giá trị bé nhất của \(t=4\)khi \(x=2004\)
Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\)Khi \(x=2004\)
Tìm GTLN (giá trị lớn nhất) hoặc GTNN(giá trị nhỏ nhất)của:
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html