Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
꧁WღX༺
Xem chi tiết
Truyen Vu Cong Thanh
Xem chi tiết
Bùi Trần Nhật Thanh
12 tháng 7 2016 lúc 16:30

Đặt 2011=t

\(\Rightarrow T=\sqrt{1+\left(t-1\right)^2+\frac{\left(t-1\right)^2}{t^2}}+\frac{t-1}{t}\)

        \(=\sqrt{\frac{t^2+t^2\left(t-1\right)^2+\left(t-1\right)^2}{t^2}}+\frac{t-1}{t}\)

        \(=\frac{\sqrt{t^2+t^4-2t^3+t^2+t^2-2t+1}+t-1}{t}\)

        \(=\frac{\sqrt{t^4+t^2+1+2t^2-2t^3-2t}+t-1}{t}\)

         \(=\frac{\sqrt{\left(t^2-t+1\right)^2}+t-1}{t}\)

       \(=\frac{t^2-t+1+t-1}{t}=t=2011\)

mà \(2011\in Z\)

nên T là một số nguyên.

Ankane Yuki
Xem chi tiết
Dũng Lê Trí
8 tháng 7 2018 lúc 10:51

1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)

\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)

\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)

\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)

\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)

Trần Hương Thảo Như
Xem chi tiết
hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}

Nguyễn Thanh Tùng
Xem chi tiết
Nguyễn Hoàng An
1 tháng 3 2017 lúc 21:10

a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)

A có tổng các chữ số là 12 chia hết cho 3 (2)

Từ (1) và (2) với (3,8)=1 => A chia hết cho 24

b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương. 

Dương Tùng Lâm
31 tháng 12 2021 lúc 19:58

Onepiece23

Khách vãng lai đã xóa
Hà Thị Thế
Xem chi tiết
Ngọc Hà
Xem chi tiết
dung
Xem chi tiết