Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

Bình luận (0)
Mai
Xem chi tiết
Lê Hoài Phương
Xem chi tiết
Trần Đức Thắng
19 tháng 10 2015 lúc 22:35

\(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)

Hai cái còn lại tương tự

=>  A \(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{1}{x+y+z}\cdot\frac{x+y+z}{xyz}=1\)

Vậy MAx A = 1 tại x = y = z = 1 

Bình luận (0)
Nguyen Duy Dai
Xem chi tiết
nub
16 tháng 8 2020 lúc 19:52

Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)

\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)

Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)

Dấu "=" xảy ra khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
Ngịch ngợm
Xem chi tiết
Ghét mấy đứa ~ đà ngU mÀ...
10 tháng 11 2016 lúc 19:04

Áp dụng bđt Cô si cho 3 số không âm ta được:

1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)

Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)

Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)

\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

Vậy ...

 

 

 

Bình luận (0)
Nguyễn Thanh Thủy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 4 2021 lúc 20:35

\(A=\frac{xyz}{x+y}\Rightarrow\frac{1}{A}=\frac{x+y}{xyz}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

 \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{yz+xz}=\frac{4}{z\left(x+y\right)}\)(1)

Lại có \(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\)(theo AM-GM) => \(\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)(2)

Từ (1) và (2) => \(\frac{x+y}{xyz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)=> \(\frac{x+y}{xyz}\ge\frac{16}{9}\)hay \(\frac{1}{A}\ge\frac{16}{9}\)

=> A ≤ 9/16. Đẳng thức xảy ra <=> z = 3/2 ; x = y = 3/4

Vậy MaxA = 9/16 <=> x = y = 3/4 ; z = 3/2

Bình luận (0)
 Khách vãng lai đã xóa
khanh cuong
10 tháng 5 2021 lúc 7:50

\(9=3^2=\left(x+y+z\right)^2\ge4\left(x+y\right)z\)

\(\rightarrow9.\frac{x+y}{xyz}\ge4.\frac{\left(x+y\right)^2}{xy}\ge4.\frac{4xy}{xy}=16\)

\(\rightarrow\frac{x+y}{xyz}\ge\frac{16}{9}\rightarrow\frac{xyz}{x+y}\le\frac{9}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{3}{4};z=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn Văn
Xem chi tiết
Nguyễn Tất Đạt
2 tháng 9 2018 lúc 16:26

Ta đi c/m BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) (*)

Thật vậy (*) \(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}\)(Do xyz=1)

Tương tự: \(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)};\frac{1}{z^3+x^3+1}\le\frac{1}{zx\left(x+y+z\right)}\)

\(\Rightarrow A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Vậy Max A = 1. Dấu "=" xảy ra <=> x=y=z=1.

Bình luận (0)
Nguyen Duy Dai
Xem chi tiết
Cố Tử Thần
14 tháng 8 2020 lúc 15:32

áp dụng bunhiacopski ta có: 

P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)

đặt (...) =A

ta có: 1/1+x^2=< 1/2x

tt với 2 cái kia

=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........

đoạn sau chj chịu

^^ sorry

Bình luận (0)
 Khách vãng lai đã xóa
FL.Hermit
14 tháng 8 2020 lúc 15:48

Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!

gt <=>    \(\frac{x+y+z}{xyz}=1\)

<=>    \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt:   \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

=>    \(ab+bc+ca=1\)

VÀ:    \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

THAY VÀO P TA ĐƯỢC:    

\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)

=>     \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)

=>     \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)

Thay     \(1=ab+bc+ca\)    vào P ta sẽ được:

=>      \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

=>     \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

=>      \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=>      \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)

=>     \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)

=>     \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)

=>     \(2P\le1+1+1=3\)

=>     \(P\le\frac{3}{2}\)

DẤU "=" XẢY RA <=>    \(a=b=c\)    . MÀ     \(ab+bc+ca=1\)

=>     \(a=b=c=\sqrt{\frac{1}{3}}\)

=>     \(x=y=z=\sqrt{3}\)

VẬY P MAX \(=\frac{3}{2}\)      <=>      \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Mạnh Khang
Xem chi tiết
Đặng Thảo Chi
10 tháng 3 2018 lúc 22:14

https://diendantoanhoc.net/topic/167848-x2y2z2xyz4-max-xyz/

Bình luận (0)