Không giải hệ phương trình, dự đoán số nghiệm của hệ 2 x − 2 y = 3 3 2 x − 6 y = 5
A. Vô số nghiệm
B. Vô nghiệm
C. Có nghiệm duy nhất
D. Có hai nghiệm phân biệt
Không giải hệ phương trình, dự đoán số nghiệm của hệ − x + 5 y = − 1 5 x + y = 2
A. Vô số nghiệm
B. Vô nghiệm
C. Có nghiệm duy nhất
D. Có hai nghiệm phân biệt
Xét hệ phương trình − x + 5 y = − 1 5 x + y = 2 có − 1 5 ≠ 5 1 nên hệ phương trình có nghiệm duy nhất
Đáp án: C
Không giải hệ phương trình, dự đoán số nghiệm của hệ
A. 0
B. Vô số
C. 1
D. 2
Đáp án C
Tập nghiệm phương trình -2x + y = -3 được biểu diễn bởi đường thẳng -2x + y = -3
Tập nghiệm phương trình 3x – 2y = 7 được biểu diễn bởi đường thẳng 3x – 2y = 7
Ta có ⇒ phương trình có một nghiệm duy nhất
Không giải hệ phương trình, dự đoán số nghiệm của hệ − 2 x + y = − 3 3 x − 2 y = 7
A. Vô số nghiệm
B. Vô nghiệm
C. Có nghiệm duy nhất
D. Có hai nghiệm phân biệt
Xét hệ phương trình − 2 x + y = − 3 3 x − 2 y = 7 có − 2 3 ≠ 1 − 2 nên hệ phương trình có nghiệm duy nhất
Đáp án: C
Không giải hệ phương trình, dự đoán số nghiệm của hệ - 2 x + y = - 3 3 x - 2 y = 7
A. 0
B. Vô số
C. 1
D. 2
Đáp án C
Tập nghiệm phương trình -2x + y = -3 được biểu diễn bởi đường thẳng -2x + y = -3
Tập nghiệm phương trình 3x – 2y = 7 được biểu diễn bởi đường thẳng 3x – 2y = 7
Ta có ⇒ phương trình có một nghiệm duy nhất
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao: x + y = 2 3 x + 3 y = 2
(I):
Xét (d): x + y = 2 hay (d): y = -x + 2 có a = -1; b = 2.
(d’) 3x + 3y = 2 hay (d’): y = -x + có a’ = -1 ; b’ =
Ta có: a = a’ ; b ≠ b’ ⇒ (d) // (d’)
⇒ Hệ (I) vô nghiệm.
Cho các hệ phương trình sau: x = 2 2 x - y = 3
Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.
x = 2 2 x - y = 3
Đường thẳng (d): x = 2 song song với trục tung.
Đường thẳng (d’): 2x – y = 3 không song song với trục tung
⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
Vẽ (d): x = 2 là đường thẳng đi qua (2 ; 0) và song song với trục tung.
Vẽ (d’): 2x - y = 3
- Cho x = 0 ⇒ y = -3 được điểm (0; -3).
- Cho y = 0 ⇒ x = 1,5 được điểm (1,5 ; 0).
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(2; 1).
Vậy hệ phương trình có nghiệm (2; 1).
Cho các hệ phương trình sau: x + 3 y = 2 2 y = 4
Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.
x + 3 y = 2 2 y = 4
Đường thẳng (d): x + 3y = 2 không song song với trục hoành
Đường thẳng (d’): 2y = 4 hay y = 2 song song với trục hoành
⇒ (d) cắt (d’)
⇒ Hệ phương trình có nghiệm duy nhất.
Vẽ (d1): x + 3y = 2
- Cho y = 0 ⇒ x = 2 được điểm (2; 0).
- Cho x = 0 ⇒ y = được điểm (0; ).
Vẽ (d2): y = 2 là đường thẳng đi qua (0; 2) và song song với trục hoành.
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(-4; 2).
Vậy hệ phương trình có nghiệm (-4; 2).
Cho các hệ phương trình sau:
a ) x = 2 2 x − y = 3 b ) x + 3 y = 2 2 y = 4
Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.
Đường thẳng (d): x = 2 song song với trục tung.
Đường thẳng (d’): 2x – y = 3 không song song với trục tung
⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
Vẽ (d): x = 2 là đường thẳng đi qua (2 ; 0) và song song với trục tung.
Vẽ (d’): 2x - y = 3
- Cho x = 0 ⇒ y = -3 được điểm (0; -3).
- Cho y = 0 ⇒ x = 1,5 được điểm (1,5 ; 0).
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(2; 1).
Vậy hệ phương trình có nghiệm (2; 1).
Đường thẳng (d): x + 3y = 2 không song song với trục hoành
Đường thẳng (d’): 2y = 4 hay y = 2 song song với trục hoành
⇒ (d) cắt (d’)
⇒ Hệ phương trình có nghiệm duy nhất.
Vẽ (d1): x + 3y = 2
- Cho y = 0 ⇒ x = 2 được điểm (2; 0).
- Cho x = 0 ⇒ y = được điểm (0; ).
Vẽ (d2): y = 2 là đường thẳng đi qua (0; 2) và song song với trục hoành.
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(-4; 2).
Vậy hệ phương trình có nghiệm (-4; 2).
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
1 3 x - y = 2 3 x - 3 y = 2