a)
Tìm n thuộc Z sao cho: n+2/3n-1 có GTLN.Tìm GT đó
b)
Cho M=a^2+b^2 với a,b thuộc N;a,b lẻ.Hỏi M có là số chính phương ko?Vì sao?
cho A = 6n+9/3n+2
a. tìm n thuộc z để A có gt nguyên
b. tìm n thuộc z để A có gt nhỏ nhất
a)để A là số nguyên thì \(6n+9⋮3n+2\Rightarrow2\left(3n+2\right)+5⋮3n+2\)
vì 2(3n+2)\(⋮\)3n+2 nên 5 phải chia hết cho 3n+2
\(\Rightarrow n\in\left\{1;-1\right\}\)
b) để A bé nhất thì tử phải nhỏ nhất và mẫu lớn nhất mà A =\(1+\frac{5}{3n+2}\) nên \(\frac{5}{3n+2}\)phải nhỏ nhất thì n=-1
tìm n E Z sao cho a, 3n-1 / 7n+5 thuộc Z b , n^2014 + n^2013+2/n+1 thuộc Z thanks nha!!
tìm n E Z sao cho: a, 3n-1 / 7n+5 thuộc Z
b , n^2014 + n^2013+2/n+1 thuộc Z
thanks nha!!
a, vì \(\frac{3n-1}{7n+5}\)thuộc Z suy ra : 3n - 1 chia hết cho 7n +5 => 7.( 3n - 1 ) chia hết cho 7n + 5
=> 21n - 7 chia hết cho 7n + 5 => 21n + 15 - 22 chia hết cho 7n + 5 => 3.( 7n + 5) - 22 chia hết cho 7n + 5
=> - 22 chia hết cho 7n + 5 ( vì 3.( 7n+ 5) chia hết cho 7n + 5 ) .
=> 7n + 5 là Ư(-22) = { -22, -11 , -2 ; -1; 1, 2, 11, 22 } đến đây dễ rồi bạn tự làm tiếp nhé.
b,vì \(\frac{n^{2014}+n^{2013}+2}{n+1}.\)thuộc Z nên ta có : \(n^{2014}+n^{2013}+2\)chia hết cho n + 1
=> \(n^{2013}\left(n+1\right)+2\)chia hết cho n +1
=> 2 chia hết cho n + 1 ( vì \(n^{2013}\left(n+1\right)\)chia hết cho n + 1 )
=> n + 1 là Ư(2) ={- 2; -1 ; 1; 2 } đến đây bạn tự làm tiếp nhé !
a) Tìm x thuộc Z, để A = 2021-x/21-x đạt GTLN.Tìm GTLN đó
b) Tìm x thuộc Z, để B = 15-x/x-9 đạt GTNN.Tìm GTNN đó
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
cho phân số:M=6n-1/3n-2
a)Tìm n để phân số M là số nguyên (n thuộc Z)
b)Tìm n để M có giá trị nhỏ nhất (n thuộc Z)
cho p/s A=6n-1/ 3n+2
a) tìm n thuộc Z để A thuộc Z
b tìm n thuộc z để A có GTNN
Để A thuộc Z => 6n - 1 chia hết 3n + 2
=> 2(3n+2) - 5 chia hết 3n + 2
=> 5 chia hết 3n + 2
=> 3n + 2 thuộc Ư(5)=.............
=> ............Còn lại tự làm nha!
tìm n E Z sao cho
a, 3n-1 / 7n+5 thuộc Z
b , n^2014 + n^2013+2/n+1 thuộc Z
thanks nha!!
cho phân số A = 6n - 1 trên 3n + 2
a: tìm N thuộc Z để A thuộc Z
b: tìm N thuộc Z để A có giá trị nhỏ nhất
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)\(=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
a, Để A thuộc Z <=> 3n + 2 thuộc Ư(5) = {1;-1;5;-5}
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 (loại) | -1 | 1 | -7/3 (loại) |
Vậy n = {-1;1}
b, Để A có giá trị nhỏ nhất <=> \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất
<=> 3n + 2 là số nguyên âm lớn nhất
<=> 3n + 2 = -1 => n = -1
Khi đó: A = \(\frac{6n-1}{3n+2}=\frac{6.\left(-1\right)-1}{3.\left(-1\right)+2}=\frac{-6-1}{-3+2}=\)\(\frac{-7}{-1}=7\)
Vậy GTNN của A = 7 khi n = -1