Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lại Đâm Đinh
Xem chi tiết
phung thi  khanh hop
3 tháng 1 2016 lúc 12:30

ko bít làm

Vương Thị Diễm Quỳnh
Xem chi tiết
Minh Hiền
5 tháng 1 2016 lúc 9:22

 = 1 đó em

Cách giải: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Nguyễn Ngọc Quý
5 tháng 1 2016 lúc 9:23

Đặt \(S=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)

\(\frac{1}{2}S=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{100}\)

\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
S = 49/100 x 2 = 49/50

A = \(S+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)

LÊ VÂNG LỜI
5 tháng 1 2016 lúc 9:26

câu trả lời là bằng 1 nha bạn

 

Zumi Trần
Xem chi tiết
Trang noo
3 tháng 1 2016 lúc 18:56

xin lỗi em mới học lớp 6 

Sehun ss lover
Xem chi tiết
Nguyễn Đăng Phúc Lâm
9 tháng 11 2021 lúc 20:07

A=1 đoán :))

Khách vãng lai đã xóa
Anh Ruby
Xem chi tiết
phung thi  khanh hop
3 tháng 1 2016 lúc 11:47

em ko biết làm mới học lớp 6

 

boy
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
16 tháng 5 2015 lúc 9:19

sao lại lấy ảnh của tui.

bài cậu hỏi tôi làm rồi đó

nhớ ****

Đinh Tuấn Việt
16 tháng 5 2015 lúc 9:07

Sao lắm bài kiểu này thế !

Trần Long Hưng
20 tháng 12 2015 lúc 13:13

Gọi b là mẫu của A, ta có: B=99/1 +98/2 +...+ 1/99 =(98/2+1) + (97/3+1) +...+ (1/99+1) +1

                                                                                = 100/2 +100/3 +...+ 100/99 +1

                                                                                = 100.(1/2+1/3+...+1/99+1/100)

=>A = \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{B}\)=1/100

 

 

Trần Duy Vương
Xem chi tiết
machanhhauang
30 tháng 3 2017 lúc 12:17

Ta có 99/1+98/2+97/3+...+1/99=(98/2+1)+(97/3+1)+...+(1/99+1)+1

=100/2+100/3+...+100/99+100/100

=100(1/2+1/3=1/4+1/5+...+1/99+1/100)

Vậy (1/2+1/3+...+1/100)/((99/1+98/2+...+1/99)=1/100

Trần Duy Vương
Xem chi tiết
❤Trang_Trang❤💋
30 tháng 3 2017 lúc 11:25

xét mẫu số = \(\frac{99}{1}\)+\(\frac{98}{2}\)+....+\(\frac{1}{99}\)

mẫu số = (\(1+\frac{98}{2}\))+(\(1+\frac{97}{3}\))+.......+(\(1+\frac{1}{99}\))

mẫu số = \(\frac{100}{2}\)+\(\frac{100}{3}\)+....+\(\frac{100}{99}\)

mẫu số =100 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{99}\))             (1)

thay (1) vào biểu thức trên

1/2+1/3+1/4+.....+1/100  /   100 x (1/2+1/3+...+1/99)

\(\frac{1}{100}\)

Nguyễn Chí Nhân
Xem chi tiết
ST
28 tháng 5 2017 lúc 11:56

a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)

Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)

\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)

\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)

\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)

Thay B và C vào A 

\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)

b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Thay E vào B

\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

Ngọc Mai
28 tháng 5 2017 lúc 12:03

a)50

b)1/100

tk ủng hộ nha

Đào Trọng Luân
28 tháng 5 2017 lúc 12:07

a,

\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}}\)

\(A=\frac{\left[1+\frac{1}{99}\right]+\left[\frac{1}{3}+\frac{1}{97}\right]+...+\left[\frac{1}{49}+\frac{1}{51}\right]}{2\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}\)

\(A=\frac{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{99.1}}{2\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}\)

\(A=\frac{100\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}{2\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}=\frac{100}{2}=50\)

b, Ta có:

\(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\left[1+\frac{98}{2}\right]+\left[1+\frac{97}{3}\right]+...+\left[1+\frac{1}{99}\right]+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}=100\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right]\)

Thế vào:

\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}=\frac{1}{100}\)