Chứng minh rằng trong hình chữ nhật: Giao điểm của hai đường chéo là tâm đối xứng của hình.
HAKED BY PAKISTAN 2011
Chứng minh rằng:
a) Giao điểm của hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
a)
Giả sử ABCD là hình chữ nhật. Gọi O là giao điểm của AC và BD.
Theo tính chất đường chéo của hình chữ nhật ta có; hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.
Vậy: OA = OC và OB= OD
Do đó, O là tâm đối xứng của hình chữ nhật đó.
b)
Áp dung tính chất: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.
ABCD là hình chữ nhật
⇒ ABCD là hình thang cân (hai đáy AB và CD)
⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.
Tương tự vậy: ABCD cũng là hình thang cân với hai đáy AD và BC
⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD.
Vậy ta có điều phải chứng minh.
Chứng minh rằng:
a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
Chứng minh rằng :
a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó
a) Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình.
b) Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cần có đáy là hai cạnh đối xứng của hình chữ nhật là trục đối xứng của hình
a) Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình.
b) Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cần có đáy là hai cạnh đối xứng của hình chữ nhật là trục đối xứng của hình.
Chứng minh rằng trong hình chữ nhật :
a) Giao điểm của hai đường chéo là tâm đối xứng của hình
b) Hai đường thẳng đi qua trung điểm của hai cạnh đối là hai trục đối xứng của hình
a. Gọi O là giao điểm của hai đường chéo AC và BD.
Vì hình chữ nhật là một hình bình hành nên điểm O là tâm đối xứng của nó.
b. Ta biết trong hình thang cân đường thẳng đi qua trung điểm của hai đáy là trục đối xứng của nó.
Theo định nghĩa ta có hình chữ nhật cũng là một hình thang cân. Nếu ta xem hình chữ nhật ABCD là hình thang cân có hai cạnh đáy AB và CD thì đường thẳng d1d1 đi qua trung điểm của AB và CD là trục đối xứng của hình chữ nhật ABCD.
Nếu ta xem hình chữ nhật ABCD là hình thang cân có hai đáy là AD và BC nên đường thẳng d2d2 đi qua trung điểm của AD và BC là trục đối xứng của hình chữ nhật ABCD.
Chứng minh rằng trong hình chữ nhật :
a) Giao điểm của 2 đường chéo là tâm đối xứng của hình
b) Hai đường thẳng đi qua trung điểm của 2 cạnh đối là 2 trục đối xứng của hình
a,Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình
b,Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có hai đáy là hai cạnh đối xứng của hình chữ nhật nên hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó
a,
Giả sử ABCD là hình chữ nhật. Gọi O là giao điểm của AC và BD.
Theo tính chất đường chéo của hình chữ nhật ta có; hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.
Vậy: OA = OC và OB= OD
Do đó, O là tâm đối xứng của hình chữ nhật đó.
b,
Áp dung tính chất: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.
ABCD là hình chữ nhật
⇒ ABCD là hình thang cân (hai đáy AB và CD)
⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.
Tương tự vậy: ABCD cũng là hình thang cân với hai đáy AD và BC
⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD. ( đpcm )
Chứng minh rằng:
a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
a,Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình
b,Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có hai đáy là hai cạnh đối xứng của hình chữ nhật nên hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó
a) Do trong hình chữ nhật, hai đường chéo cắt nhau tại trung điểm mỗi đường nên giao điểm của hai đường chéo là tâm đối xứng của hình chữ nhật.
b) Do hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có đáy là hai cạnh đối xứng của hình chữ nhật, do đó hai đường thẳng đi qua trung điểm hai cạnh đối của hình chữ nhật là trục đối xứng của hình.
a) Do trong hình chữ nhật, hai đường chéo cắt nhau tại trung điểm mỗi đường nên giao điểm của hai đường chéo là tâm đối xứng của hình chữ nhật.
b) Do hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có đáy là hai cạnh đối xứng của hình chữ nhật, do đó hai đường thẳng đi qua trung điểm hai cạnh đối của hình chữ nhật là trục đối xứng của hình.
Chứng minh rằng:
a) Giao điểm hai đường chéo cuẩ hình chữ nhật là tâm đối xứng củahình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
AE OI GIUP M` NHA CM CO HINH NHA CAC BAN ~~~
Do hình chữ nhật là hình bình hành nên nhận giao điểm hai đường chéo làm tâm đối xứng.
Chứng minh
b) Do hình chữ nhật là hình thang cân có đáy là hai cặp cạnh đối của nó. Do đó hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
XONG RÙI NÀ ^^^^^^^^^^^
a,Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình
b,Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có hai đáy là hai cạnh đối xứng của hình chữ nhật nên hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó
chứng minh rằng trong hình thoi
a) giao điểm hai đường chéo là tâm đối xứng của hình thoi
b) hai đường chéo là hai trục đối xứng của hình thoi
a,
ABCD là hình thoi
=> ABCD là hình bình hành
=> Giao điểm O của AC và BD là tâm đối xứng của ABCD.
Xét hình thoi ABCD, gọi O là giao điểm của 2 đường chéo.
* Ta chứng minh: đường chéo BD là trục đối xứng của hình
Lấy điểm M bất kì thuộc hình thoi. Không mất tổng quát, M nằm trên CD.
Gọi M’ đối xứng với M qua đường thẳng BD. Ta chứng minh điểm M’ cũng thuộc hình thoi
+ Gọi I là giao điểm của MM’ và BD.
Xét tam giác DIM và DIM’ có :
\(\widehat{DIM}=\widehat{DIM'}=90^o\)
DI chung
IM= IM’ ( do M và M’ đối xứng với nhau qua BD)
\(\Rightarrow\Delta DIM=\Delta DIM'\left(c-g-c\right)\left(1\right)\)
Lại có: ABCD là hình thoi nên
\(\widehat{IDA}=\widehat{IDC}\)và \(\widehat{IDM}=\widehat{IDA}\left(2\right)\)
Từ (1) và (2) suy ra, điểm M’ nằm trên cạnh AD hay điểm M’ thuộc hình thoi
=> BD là trục đối xứng của hình thoi.
*Chứng minh tương tự, ta có: AC là trục đối xứng của hình thoi.
Chứng minh rằng:
a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.
b) Hai đường chéo của hình thoi là hai trục đối xứng của hình thoi.
a) ABCD là hình thoi
⇒ ABCD là hình bình hành
⇒ giao điểm O của AC và BD là tâm đối xứng của ABCD.
b)
ét hình thoi ABCD, gọi O là giao điểm của 2 đường chéo.
* Ta chứng minh: đường chéo BD là trục đối xứng của hình
Lấy điểm M bất kì thuộc hình thoi. Không mất tổng quát, M nằm trên CD.
Gọi M’ đối xứng với M qua đường thẳng BD. Ta chứng minh điểm M’ cũng thuộc hình thoi
+ Gọi I là giao điểm của MM’ và BD.
Xét tam giác DIM và DIM’ có:
DI chung
IM= IM’ ( do M và M’ đối xứng với nhau qua BD)
=> ∆ DIM = ∆ DIM’ ( c.g.c)
=> DM = DM’ và
Lại có: ABCD là hình thoi nên
Từ (1) và (2) suy ra, điểm M’ nằm trên cạnh AD hay điểm M’ thuộc hình thoi
=> BD là trục đối xứng của hình thoi.
*Chứng minh tương tự, ta có: AC là trục đối xứng của hình thoi.