Tính và so sánh: - 2 3 3 v à - 2 3 3 3
1. so sánh
\(2^{27}v\text{à}3^{18}\)
\(3^{21}v\text{à}2^{31}\)
\(2^{27}=2^{3.9}=8^9\)
\(3^{18}=3^{2.9}=9^9\)
Vì \(9^9>8^9\Rightarrow3^{18}>2^{27}\)
MK chỉ làm đc câu a) thui nha :
2^27 = 2^ 3.9 = 8^9
3^18 = 3^2.9=9^9
Vì 9^9 > 8^9 => 2^27 < 2 ^18
Không dùng máy tính ,hãy so sánh :
1 )\(\sqrt{7-\sqrt{21}+4\sqrt{5}}v\text{à}\sqrt{5}-1\)
2 )\(\sqrt{5}+\sqrt{10}+1v\text{à}\sqrt{35}.\)
3 )\(\frac{15-2\sqrt{10}}{3}v\text{à}\sqrt{15}.\)
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
So sánh:
a)\(2^{24}v\text{à}3^{16}\)
b)\(2^{300}v\text{à}3^{200}\)
c)\(71^5v\text{à}7^{20}\)
a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)
Mà \(64< 81\)
\(\Rightarrow64^4< 81^4\)
\(\Rightarrow2^{24}< 3^{16}\)
b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)
Mà 8 < 9
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)
Ta có 71 < 2401
\(\Rightarrow71^5< 2401^5\)
\(\Rightarrow71^5< 7^{20}\)
!! K chắc câu c
@@ Học tốt
Chiyuki Fujito
a) \(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
c) \(7^{20}=\left(7^4\right)^5=2401^5\)
Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)
So sánh :
\(a,2^{30}v\text{à}3^{20}\)
\(b,5^{300}v\text{à}3^{500}\)
\(c,2^{24}v\text{à}3^{16}\)
\(d,\left(0,3\right)^{40}v\text{à}\left(0,1\right)^{20}\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
\(\text{c, }2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
\(\text{Vậy ...}\)
So sánh
\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)
\(b,2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
\(c,2^0+2^1+2^2+...+2^{50}v\text{à}2^{51}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)
\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)
Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)
hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
So sánh :
\(10^{30}v\text{à}2^{100}\)
\(5^{300}v\text{à}3^{453}\)
\(29^{12}v\text{à}18^{17}\)
103và 2100
Ta có:1030=(103)10=100010
2100=(210)10=102410
Vì 1000<1024 nên 1030<2100
5300 và 3453
Ta có:5300=(52)150=25150
3453=(33)151=27151=27.27150
Vì 25 < 27.27 nên 5300<3453
nhớ k ch mình nhé
so sánh: a/ 4 và\(1+2\sqrt{2}\) b/4 và\(2\sqrt{6}-1\) c/\(-3\sqrt{3}v\text{à}-2\sqrt{7}\)
a)
Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)
Vậy \(4>1+2\sqrt{2}\)
b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)
Vậy \(4>2\sqrt{6}-1\)
c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\)
=> \(3\sqrt{3}< 2\sqrt{7}\)
=> \(-3\sqrt{3}>-2\sqrt{7}\)
SO SÁNH PHÂN SỐ
a;23/41 VÀ 3/2
b; 15/23 VÀ 17/20
a)
Ta thấy : 23/41 < 1 , 3/2 > 1
=> 23/41 < 3/2
b)
Ta có phân số trung gian là: 15/20
15/23<15/20<17/20
=>15/23 < 17/20
So sánh:
a)\(3^{200}v\text{à}2^{300}\)
b) \(71^{50}v\text{à}37^{75}\)
c) \(\frac{2016014}{2017015}v\text{à}\frac{2016016014}{2017017015}\)
a) 3200=(32)100=9100 ; 2300=(23)100=8100
=> 9100>8100 hay 3200>2300
b) 7150=(712)25=504125 ; 3775=(373)25=5065325
=> 504125<5065325 hay 7150<3775
c)rút gọn
2016014/2017015=2014/2015
2016016014/2017017015=2014/2015
=> 2014/2015 = 2014/2015
so sánh;
a) \(3^{1234}v\text{à}2^{1851}\)
31234 = (32)617 = 9617
21851 = (23)617 = 8617
Ta thấy: 9>8 => 31234 > 21851