Giá trị của biểu thức:
A= \(\frac{1}{1+2}=\frac{1}{1+2+3}=.......=\frac{1}{1+2+3+...+99}+\frac{1}{50}\)là ....?
Tính giá trị biểu thức:A=\(\frac{1}{1+2}+\frac{1}{2+3}+...+\frac{1}{99+100}\)
Giá trị của biểu thức :
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)=?
= 1 đó em
Cách giải: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Đặt \(S=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)
\(\frac{1}{2}S=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{100}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
S = 49/100 x 2 = 49/50
A = \(S+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)
Giá trị biểu thức
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
Tính giá trị biểu thức:A=
Ta có : \(\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}\)
Bài này lớp 6 phải không bạn
A=1/1-1/2+1/2-1/3+1/3-1/4+1/5-1/6+......................+1/99-1/100
A=1/1-1/100
A=99/100
Nếu bạn cảm thấy bài mình đúng thì cho mình một "lai"
=\(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+.........\frac{100-99}{99\cdot100}\)
=\(\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}.-\frac{2}{2\cdot3}+.........\frac{100}{99\cdot100}-\frac{99}{99\cdot100}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}.-\frac{1}{4}+..........+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{1}-\frac{1}{100}\)
=\(\frac{99}{100}\)
Tính giá trị của biểu thức \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Ta có 99/1+98/2+97/3+...+1/99=(98/2+1)+(97/3+1)+...+(1/99+1)+1
=100/2+100/3+...+100/99+100/100
=100(1/2+1/3=1/4+1/5+...+1/99+1/100)
Vậy (1/2+1/3+...+1/100)/((99/1+98/2+...+1/99)=1/100
Tính giá trị của biểu thức \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
xét mẫu số = \(\frac{99}{1}\)+\(\frac{98}{2}\)+....+\(\frac{1}{99}\)
mẫu số = (\(1+\frac{98}{2}\))+(\(1+\frac{97}{3}\))+.......+(\(1+\frac{1}{99}\))
mẫu số = \(\frac{100}{2}\)+\(\frac{100}{3}\)+....+\(\frac{100}{99}\)
mẫu số =100 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{99}\)) (1)
thay (1) vào biểu thức trên
1/2+1/3+1/4+.....+1/100 / 100 x (1/2+1/3+...+1/99)
= \(\frac{1}{100}\)
Giá trị của biểu thức
A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)là...
Mấy bạn chimte nào ngang qua đây thì giúp tớ với nha, tớ sẽ tick cho, yên tâm nha, cảm ơn các cậu nhiều =))))))))))))))))
Tính giá trị của biểu thức:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4...+99}+\frac{1}{50}\)
Mấy cậu giúp tớ với nha, tớ sẽ tick cho ạ, cảm ơn mấy cậu nhiều.
A=1 đoán :))
Tính giá trị biểu thức: \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
GIẢI CHI TIẾT GIÙM MÌNH NHA!!!^_^ ^=^ CẢM ƠN NHÌU