Chứng tỏ phương trình 4(x – 2) – 3x = x - 8 có vô số nghiệm
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Chứng tỏ rằng các phương trình sau vô nghiệm:
a/ x 2 + 3x + 7 = x 2 + 3x – 2 b/ 2x 2 - 6x + 6 = 0
a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)
\(\Leftrightarrow0x=-9\)(vô lí)
Vậy phương trình vô nghiệm
b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)
chúc bn học tốt!
Chứng tỏ phương trình 2x + 5 = 4(x – 1) – 2(x – 3) vô nghiệm.
Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)
Vậy phương trình đã cho vô nghiệm.
Giải bao nhiêu được bấy nhiêu ak, giúp mk với, cần gấp, thanks
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
Cho 2 phương trình: x2 - 3x - 4 = 0 (1) và (x - 4) ( x - 2)- x= 0 (2)
a) Chứng tỏ 2 phương trình trên có nghiện chung là x=4
b) Chứng tỏ x= -1 là nghiệm của phưng trình (1) nhưng không là nghiệm của phương trình (2)
c) Hai phương trình trên có tương đương nhau không?vì sao?
Chứng tỏ phương trình sau vô nghiệm: x4 + 3x3 + 2x2 - 6x +14 = 0
B1.Chứng tỏ phương trình sau vô nghiệm
x^-3x+4=0
B2 Một số tự nhiên có 2 chữ số .Tổng các chữ số bằng 10.Nếu đổi chỗ hai số cho nhau thì đc một số lớn hơn số đã cho là 18.Tìm số đã cho
Ta có: \(x^2-3x+4=x^2-2\cdot\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
=> PT vô nghiệm
Bài 2 :
Gọi số đã cho có dạng ab
Vì a + b = 10
=> b = 10 - a
Ta có :
ba - ab = 18
=> 10b + a - 10a - b = 18
=> 10(10 - a) + a - 10a - (10 - a) = 18
=> 100 - 10a + a - 10a - 10 + a = 18
=> -18a + 90 = 18
=> -18a = -108
=> a = 6
=> b = 4
Vậy số đã cho là 64
p/s : Tưởng bài lớp 5 ?
Chứng minh các phương trình sau vô nghiệm:
a) (x-2)3=(x-2).(x2+2x+4)-6.(x-1)2
b)4x2-12x+10=0
Chứng minh các phương trình sau vô số nghiệm:
(x+1).(x2-x-1)=(x+1)3-3x.(x+1)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)