Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trinh linh
Xem chi tiết
Bùi Danh Nghệ
13 tháng 1 2016 lúc 9:18

Ngồi tick kiếm "tiền"

Ngồi làm mất thời gian

AI thấy đúng thì tick nhé!!!

trinh linh
Xem chi tiết
Khánh An
Xem chi tiết
Lê Anh Tú
23 tháng 3 2020 lúc 11:54

a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)

\(\Leftrightarrow0x=-9\)(vô lí)

Vậy phương trình vô nghiệm

b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)

chúc bn học tốt!

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 7:04

Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm.

Nguyễn Duyên
Xem chi tiết
Hoàng Thảo
20 tháng 3 2018 lúc 21:10

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

đặt \(\left(x^2+x\right)=t\)  ta có 

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2+6t-2t-12=0\)

\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)

khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường 

Phạm Thị Ngọc Ánh
Xem chi tiết
Trần Võ Xuân Nhi
Xem chi tiết
Ngạc Đức Anh
Xem chi tiết
Tran Le Khanh Linh
7 tháng 4 2020 lúc 18:53

Ta có: \(x^2-3x+4=x^2-2\cdot\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

=> PT vô nghiệm

Khách vãng lai đã xóa
Minh Nguyen
8 tháng 4 2020 lúc 11:58

Bài 2 :

Gọi số đã cho có dạng ab 

Vì a + b = 10

=> b = 10 - a

Ta có :

ba - ab = 18

=> 10b + a - 10a - b = 18

=> 10(10 - a) + a - 10a - (10 - a) = 18

=> 100 - 10a + a - 10a - 10 + a = 18

=> -18a + 90 = 18

=> -18a = -108

=> a = 6

=> b = 4

Vậy số đã cho là 64

p/s : Tưởng bài lớp 5 ?

Khách vãng lai đã xóa
#Biinz_Tổng
Xem chi tiết
Nguyễn Tấn Phát
22 tháng 1 2020 lúc 12:45

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

Khách vãng lai đã xóa