Phát biểu định lí và hệ quả về các góc nội tiếp cùng chắn một cung.
7. Phát biểu định lí và hệ quả về các góc nội tiếp cùng chắn một cung.
Định lí: Các góc nội tiếp cùng chắn một cung thì bằng nhau.
Hệ quả: Góc nội tiếp (nhỏ hơn hoặc bằng 90o) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
Các khẳng định sau đây đúng hay sai?
a) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.
b) Trong một đường tròn, các góc nội tiếp bằng nhau thì cùng chắn một cung.
a) Đúng (theo hệ quả b).
b) Sai. Vì trong cùng một đường tròn, các góc nội tiếp cùng chắn 1 cung hoặc chắn các cung bằng nhau thì bằng nhau.
Trong một đường tròn, các góc nội tiếp bằng nhau chưa chắc cùng chắn một cung.
Kiến thức áp dụng
Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Hệ quả: Trong một đường tròn, các góc nội tiếp bằng nhau chắn các cung bằng nhau.
Các khẳng định sau đây đúng hay sai?
a) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.
b) Trong một đường tròn, các góc nội tiếp bằng nhau thì cùng chắn một cung.
a) Đúng (theo hệ quả b).
b) Sai. Vì trong cùng một đường tròn, các góc nội tiếp cùng chắn 1 cung hoặc chắn các cung bằng nhau thì bằng nhau.
Trong một đường tròn, các góc nội tiếp bằng nhau chưa chắc cùng chắn một cung.
Các khẳng định sau đây đúng hay sai?
a) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.
b) Trong một đường tròn, các góc nội tiếp bằng nhau thì cùng chắn một cung.
a) Đúng (theo hệ quả a)
b) Sai, vì trong một đường tròn có thể có các góc nội tiếp bằng nhau nhưng không cùng chắn một cung.
phát biểu định lí về tổng các góc của tam giác và các hệ quả
Tổng ba góc của 1 tam giác là \(180^o\)
Định nghĩa: Góc ngoài của tam giác là góc kề bù với một góc của tam giác
Phát biểu các định lí về mối quan hệ giữa cung nhỏ và dây căng cung đó trong một đường tròn.
Với hai cung nhỏ của một đường tròn hay hai đường tròn bằng nhau thì:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
- Cung lớn hơn căng dây lớn hơn.
- Dây lớn hơn căng cung lớn hơn.
Phát biểu các định lí về mối quan hệ giữa cung nhỏ và dây căng cung đó trong một đường tròn.
Với hai cung nhỏ của một đường tròn hay hai đường tròn bằng nhau thì:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
- Cung lớn hơn căng dây lớn hơn.
- Dây lớn hơn căng cung lớn hơn.
Mỗi câu sau đây đúng hay sai
(A) Góc nội tiếp là góc tạo bởi hai dây của đường tròn đó.
(B) Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung.
(C) Trong một đường tròn, hai góc nội tiếp không cùng chắn một cung thì không bằng nhau.
(D) Trong một đường tròn, số đo của một góc nội tiếp bằng số đo cung bị chắn.
(E) Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
(A) Sai. Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó.
(B) Sai. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung hoặc chắn hai cung bằng nhau.
(C) Sai. Trong một đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau.
(D) Sai. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của góc ở tâm cùng chắn một cung.
(E) Đúng. Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
Phát biểu định lí về góc tạo bởi tia tiếp tuyến và dây cung.
Định lí thuận: Góc tạo bởi tia tiếp tuyến và dây cung có số đo bằng nửa số đo của cung bị chắn.
Định lí đảo: Một góc có đỉnh nằm trên đường tròn, một cạnh chứa dây cung, có số đo bằng nửa số đo cung căng dây đó và cung này nằm bên trong góc thì cạnh kia là một tia tiếp tuyến.