Số nguyên nằm giữa \(-\left(\frac{1}{2}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{10}\) là.................
a,Tính \(\frac{2^{12}.27^3-15.\left(-4\right)^9.9^4}{6^9.2^{10}+\left(-12\right)^{10}}\)
b, Cho a,b,c là các số nguyên dương. CMR:
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)> 1.
c, Tính bằng cách hợp lí:
\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{99^2}-1\right)\)
Tìm số nguyên x, nếu biết:
\(1.\) \(\left(-7\right)^x=\frac{1}{49}\)
\(2.\left(-10\right)^x=-\frac{1}{10}\)
\(3.\left(-10\right)^x=\frac{1}{100}\)
\(4.\left(-100\right)^x=\frac{1}{10000}\)
\(5.\left(-2\right)^x=-0,5\)
chỉ cách giải luôn nha bạn chỉ rõ mới k
Tìm số nguyên x
\(\left(\frac{1}{16}\right)^x=\left(\frac{1}{2}\right)^{10}\)
(1/16)x=(1/2)10
Mà: (1/16)x=((1/2)4)x
=>4.x=10
=>x=10:4
=>x=2,5
(1/16)x = ((1/2)4)x
4 . x = 10
x = 10:4
x = 2,5
Rút gọn biểu thức :
a) \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{4}\right).\left(1+\frac{1}{16}\right)...\left(1+\frac{1}{2^{2n}}\right)\)
b) \(\left(10+1\right).\left(10^2+1\right)\left(10^3+1\right)...\left(10^{2n}+1\right)\)
Tìm nghiệm nguyên của các phương trình:
\(\left[\frac{x}{1!}\right]+\left[\frac{x}{2!}\right]+\left[\frac{x}{3!}\right]=224\)
\(\left[\frac{x}{1!}\right]+\left[\frac{x}{2!}\right]+\left[\frac{x}{3!}\right]+...+\left[\frac{x}{10!}\right]=1001\)
Rút gọn biểu thức sau với n là số tự nhiên:
\(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right)...\left(1+\frac{2}{n^2+3n}\right)\)
Đặt A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)
Ta có : A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)
= \(\frac{6}{4}.\frac{12}{10}.\frac{20}{18}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)
= \(\frac{3.2}{4}.\frac{3.4}{2.5}.\frac{4.5}{3.6}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)
= \(\frac{3.2.3.4.4.5....n}{2.3.4.5.6.....\left(n+2\right)}\)
= \(\frac{3.\left(n+1\right)}{n+2}\)
Vậy A = \(\frac{3.\left(n+1\right)}{n+2}\)
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA
1 . Tinh : a , \(\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{14}\right).....\left(1-\frac{1}{5050}\right)\)b,\(\frac{^{2^{19}}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)c,\(\frac{18.\frac{19}{2}.\frac{20}{3}.\frac{21}{4}.....\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}.....\frac{36}{17}}\)giup mjk nha mjk tjk cho
Bài 1: Một miếng đất hình chữ nhật có chu vi bằng 70m và tỉ số giữa 2 cạnh của có bằng 3*4. Tính S miếng đất này. ( * là phần)
Bài 2 Tính:
E= \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
P/s: Mình cần bài này trước chiều mai ạ. Mong mọi người giúp mình nhé!! Cảm ơn ạ :)
bài 1)
70:2=35(m)
Gọi a và b lần lượt là chiều rộng và chiều dài của miếng đất
Từ b/a = 4 /3 = > 3/a = 4 /b
= > 3/ a = 4/ b = 3 + 4/ a + b = 7/ 35 = 5 /3 a = 5
= > a = 3.5 = 15/ 4 b = 5
= > b = 5.4 = 20
Vậy diện tích miếng đất đó là:
15.20=300(m2)
2) Bài 138 (Sách bài tập - tập 1 - trang 33)
bài 2 cậu vào cái ý là có