Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phạm Tấn Hậu
Xem chi tiết
Phú Quý Lê Tăng
28 tháng 9 2017 lúc 8:18

Gọi tích 4 số nguyên dương liên tiếp đó là A=(a-1)a(a+1)(a+2)

A = [(a-1)(a+2)][a(a+1)] = (a^2+2a-a-2)(a^2+a) = (a^2+a-2)(a^2+a)

Đặt a^2+a-1=x; thế thì A=(x-1)(x+1)=x^2-1 không phải là số chính phương

Đặng Thị Thanh Tâm
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
15 tháng 1 2020 lúc 20:21

a,Giả sử tích 2 số nguyên dương là 1 số chính phương

Gọi 2 số đó là \(x;x+1\left(x\inℕ^∗\right)\)

ta có:\(x\left(x+1\right)=a^2\left(a\inℤ|a\ne0\right)\)

Mà x và x+1 nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x=b^2\\x+1=c^2\Rightarrow b^2+1=c^2\end{cases}}\)

\(\Rightarrow1=c^2-b^2=\left(c-b\right)\left(c+b\right)\Rightarrow c-b=c+b\Rightarrow b=0\Rightarrow x=0\)(Trái với giả thuyết)

Vậy điều giả sử là sai,do đó tích 2 số nguyên dương ko là số chính phương(DPCM)

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
15 tháng 1 2020 lúc 20:43

Giả sử có số thỏa mãn đề bài

Gọi 3 số đó là\(x-1;x;x+1\left(x\inℕ|x>1\right)\)

Ta có:\(\left(x-1\right)x\left(x+1\right)=a^2\)(điều kiện như câu a)

\(\Rightarrow\left(x-1\right)\left(x+1\right)x=a^2\Rightarrow\left(x^2-1\right)x=a^2\)

Gọi d là ước chung của x và\(x^2-1\)

\(\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x⋮d\Rightarrow x^2⋮d\end{cases}}\)

\(\Rightarrow x^2-\left(x^2-1\right)=1⋮d\Rightarrow d=1\)

Do đó x và\(x^2-1\)nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x=b^2\\x^2-1=\left(b^2\right)^2-1=c^2\end{cases}}\)

\(\Rightarrow\left(b^2\right)^2-1=c^2\Rightarrow\left(b^2\right)^2-c^2=1\Rightarrow\left(b^2-c\right)\left(b^2+c\right)=1\Rightarrow b^2-c=b^2+c\Leftrightarrow c=0\)

\(\Rightarrow\left(b^2\right)^2-1=0\Rightarrow\left(b^2\right)^2=1\Rightarrow b^2=1\Rightarrow x=1\)(Trái với giả thuyết)

Vậy điền giả sử là sai,do đó ko có số nguyên dương thỏa mãn đề bài(ĐPCM)

Khách vãng lai đã xóa
Đặng Thị Thanh Tâm
Xem chi tiết
Quang Nguyễn
Xem chi tiết
Dương Lam Hàng
23 tháng 7 2018 lúc 15:33

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

Quang Nguyễn
24 tháng 7 2018 lúc 8:48

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

Nguyễn Văn Khôi
Xem chi tiết
phạm bảo linh
Xem chi tiết
Punch
30 tháng 11 2019 lúc 15:38

2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)

Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6

Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2

Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4

Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22

Do đó tổng của 4 số TN liên tiếp không là số chính Phương

Học tốt 🐱

Khách vãng lai đã xóa
Nguyễn Kiều Trang
Xem chi tiết
lutufine 159732486
Xem chi tiết
Hoàng Khánh Linh
Xem chi tiết
Huy Rio
3 tháng 11 2016 lúc 13:01

Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3(a thuộc N)

Ta có: a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)=\(\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

Đặt A=\(a^2+3a\)thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)

Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương