Giải các phương trình: 3x4 – 12x2 + 9 = 0
Giải các phương trình:
a ) 3 x 4 – 12 x 2 + 9 = 0 ; b ) 2 x 4 + 3 x 2 – 2 = 0 ; c ) x 4 + 5 x 2 + 1 = 0.
Cả ba phương trình trên đều là phương trình trùng phương.
a) 3 x 4 – 12 x 2 + 9 = 0 ( 1 )
Đặt x 2 = t , t ≥ 0.
(1) trở thành: 3 t 2 – 12 t + 9 = 0 ( 2 )
Giải (2):
Có a = 3; b = -12; c = 9
⇒ a + b + c = 0
⇒ (2) có hai nghiệm t 1 = 1 v à t 2 = 3 .
Cả hai nghiệm đều thỏa mãn điều kiện.
+ t = 3 ⇒ x 2 = 3 ⇒ x = ± 3 + t = 1 ⇒ x 2 = 1 ⇒ x = ± 1
Vậy phương trình có tập nghiệm
b) 2 x 4 + 3 x 2 – 2 = 0 ( 1 )
Đặt x 2 = t , t ≥ 0.
(1) trở thành: 2 t 2 + 3 t – 2 = 0 ( 2 )
Giải (2) :
Có a = 2 ; b = 3 ; c = -2
⇒ Δ = 3 2 – 4 . 2 . ( - 2 ) = 25 > 0
⇒ (2) có hai nghiệm
t 1 = - 2 < 0 nên loại.
Vậy phương trình có tập nghiệm
c) x 4 + 5 x 2 + 1 = 0 ( 1 )
Đặt x 2 = t , t > 0 .
(1) trở thành: t 2 + 5 t + 1 = 0 ( 2 )
Giải (2):
Có a = 1; b = 5; c = 1
⇒ Δ = 5 2 – 4 . 1 . 1 = 21 > 0
⇒ Phương trình có hai nghiệm:
Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Giải các phương trình trùng phương 1 3 x 4 - 1 2 x 2 + 1 6 = 0
Đặt m = x 2 .Điều kiện m ≥ 0
Ta có: 1/3. x 4 - 1/2. x 2 +1/6 =0⇔ 2 x 4 -3 x 2 +1=0 ⇔ 2 m 2 -3m + 1 =0
Phương trình 2 m 2 -3m + 1 =0 có hệ số a=2,b=-3,c=1 nên có dạng a +b+c =0
suy ra: m 1 = 1 , m 2 = 1/2
Ta có: x 2 = 1 ⇒ x = ± 1
x 2 = 1/2 ⇒ x = ± 2 /2
Vậy phương trình đã cho có 4 nghiệm :
x 1 =1 ; x 2 =-1 ; x 3 =( 2 )/2; x 4 = - 2 /2
Giải các phương trình trùng phương:
3x4 + 10x2 + 3 = 0
3x4 + 10x2 + 3 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 3t2 + 10t + 3 = 0 (2)
Giải (2) : Có a = 3; b' = 5; c = 3
⇒ Δ’ = 52 – 3.3 = 16 > 0
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Giải các phương trình trùng phương: 3x4 + 4x2 + 1 = 0
3x4 + 4x2 + 1 = 0
Đặt x2 = t (t ≥ 0). Phương trình trở thành:
3t2 + 4t + 1 = 0
Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm
t1 = -1; t2 = (-1)/3
Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0
Vậy phương trình đã cho vô nghiệm.
Giải các phương trình 3x4 + 2x2 - 1 = 0
3x4 + 2x2 – 1 = 0 (2)
Tập xác định : D = R.
Đặt t = x2, điều kiện t ≥ 0
Khi đó phương trình (2) trở thành :
3t2 + 2t – 1 = 0 ⇔ (3t – 1)(t + 1) = 0
Giải các phương trình trùng phương:
a ) 4 x 4 + x 2 − 5 = 0 b ) 3 x 4 + 4 x 2 + 1 = 0
a) 4 x 4 + x 2 − 5 = 0
Đặt x 2 = t (t ≥ 0). Phương trình trở thành:
4 t 2 + t − 5 = 0
Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm
t 1 = 1 ; t 2 = ( − 5 ) / 4
Do t ≥ 0 nên t = 1 thỏa mãn điều kiện
Với t = 1, ta có: x 2 = 1 ⇔ x = ± 1
Vậy phương trình có 2 nghiệm x 1 = 1 ; x 2 = − 1
b) 3 x 4 + 4 x 2 + 1 = 0
Đặt x 2 = t ( t ≥ 0 ) . Phương trình trở thành:
3 t 2 + 4 t + 1 = 0
Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm
t 1 = - 1 ; t 2 = ( - 1 ) / 3
Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0
Vậy phương trình đã cho vô nghiệm.
Giải các phương trình sau:
a ) 12 x 2 + 30 x - 21 16 x 2 - 9 - 3 x - 7 3 - 4 x = 6 x + 5 4 x + 3
b ) x + 3 2 - x - 3 2 = 6 x + 18
a) ĐKXĐ : 3 – 4x ≠ 0 và 3 + 4x ≠ 0 (16x2 – 9 = - (3 – 4x)(3 + 4x) ≠ 0)
⇔ x ≠ 3/4 và x ≠ -3/4
Quy đồng mẫu thức :
Khử mẫu, ta được :
-12x2 – 30x + 21 – (9x + 12x2 – 21 – 28x) = 18x – 24x2 + 15 – 20x
⇔ -12x2 – 30x + 21 – 9x – 12x2 + 21 + 28x = 18x – 24x2 + 15 – 20x
⇔ -9x = -27 ⇔ x = 3 (thỏa mãn ĐKXĐ)
Tập nghiệm : S = {3}
b) (x + 3)2 - (x -3)2 = 6x + 18
⇔ x2 + 6x + 9 – x2 + 6x – 9 = 6x + 18
⇔ 6x = 18 ⇔ x = 3
Tập nghiệm : S = {3}
Giải các phương trình trùng phương:
a ) x 4 − 5 x 2 + 4 = 0 b ) 2 x 4 − 3 x 2 − 2 = 0 c ) 3 x 4 + 10 x 2 + 3 = 0
a) x 4 – 5 x 2 + 4 = 0 ( 1 )
Đặt x 2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t 2 – 5 t + 4 = 0 ( 2 )
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t 1 = 1 ; t 2 = c / a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x 2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x 2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
b) 2 x 4 – 3 x 2 – 2 = 0 ; ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 2 t 2 – 3 t – 2 = 0 ( 2 )
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Δ = ( - 3 ) 2 - 4 . 2 . ( - 2 ) = 25 > 0
⇒ Phương trình có hai nghiệm
Chỉ có giá trị t 1 = 2 thỏa mãn điều kiện.
+ Với t = 2 ⇒ x 2 = 2 ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
c) 3 x 4 + 10 x 2 + 3 = 0 ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 3 t 2 + 10 t + 3 = 0 ( 2 )
Giải (2) : Có a = 3; b' = 5; c = 3
⇒ Δ ’ = 5 2 – 3 . 3 = 16 > 0
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Giải phương trình rồi kiểm nghiệm hệ thức vi-ét: 1 2 x 2 - 3 x + 2 = 0
Phương trình 1 2 x 2 - 3 x + 2 = 0 ⇔ x 2 - 6x + 4 =0 có hệ số a = 1, b = -6, c = 4
∆ '= - 3 2 -1.4 = 9 - 4 = 5 > 0
∆ ' = 5