Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Nguyệt
Xem chi tiết
Đoàn Thế Nhật
Xem chi tiết
Nguyễn Hoàng Tiến
6 tháng 5 2016 lúc 21:10

Ta có:

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(x^2+y^2+2xy+7x+7y+y^2+10=0\)

\(x^2+y^2+1+2xy+2x+2y+5x+5y+5+4=0\)

\(\left(x+y+1\right)^2+5\left(x+y+1\right)+4=0\)

\(\left(x+y+1\right)^2+\left(x+y+1\right)+4\left(x+y+1\right)+4=0\)

\(\left(x+y+1\right)\left(x+y+2\right)+4\left(x+y+1\right)=0\)

\(\left(x+y+1\right)\left(x+y+6\right)=0\)

\(x+y=-1\)\(x+y=-6\)

Max T=x+y+1=-6+1=-5 <=> x+y=-6

Min T=x+y+1=-1+1=0 <=> x+y=-1

ngô phương thúy
Xem chi tiết
Hoàng Ngọc Vân Huyền
5 tháng 8 2016 lúc 21:20
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

ngô phương thúy
Xem chi tiết
Hoàng Ngọc Vân Huyền
5 tháng 8 2016 lúc 21:17
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

okazaki * Nightcore - Cứ...
18 tháng 9 2019 lúc 17:19

đáp số 

x,y=0

jhok tốt

Đinh Thị Ngọc Anh
Xem chi tiết
Bùi Đức Thắng
Xem chi tiết
Kaito Kid
Xem chi tiết
Thiên Y
Xem chi tiết
Nguyễn Tất Đạt
30 tháng 7 2018 lúc 18:48

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

Kha Mi
Xem chi tiết