có 82 ô vuông mỗi ô được sơn 1 màu. CMR: luôn tìm được 10 ô cùng màu hoặc 10 ô khác màu
Có 82 khối vuông, mỗi khối được sơn 1 màu nhất định. CMR ta luôn có thể tìm được 10 khối có màu khác nhau hay 10 khối được sơn cùng một màu
bài này hình như phải có số màu sơn thì mới làm đc
có 82 khối vuông,mỗi khối được sơn một màu xác định. chứng minh ta luôn có thể tìm được 10 khối có màu khác nhau hoặc 10 khối được sơn cùng màu
Cho bảng ô vuông kích thước \(3\times n\)(3 hàng, n cột, n là số tự nhiên lớn hơn 1) được tạo bởi các ô vuông có kích thước \(1\times1\). Mỗi ô vuông nhỏ được tô bởi 1 trong 2 màu xanh hoặc đỏ. Tìm số n bé nhất để với mọi cách tô màu như thế luôn tìm được hình chữ nhật tạo bởi các ô vuông nhỏ sao cho 4 ô vuông nhỏ ở 4 góc có cùng màu.
đây là toán tổ hợp rời rạc nên là bài của ĐT nên chắc em hiểu khái niệm về tổ hợp và chỉnh hợp chập k của n rồi nhỉ?
Ta sẽ có bài tổng quát sau nhé:
Cho hcn nx(n(n-1)+1) được tô bởi 2 màu xanh đỏ, Chứng minh rằng luôn tồn tại 1 hcn đặc biệt mà với mọi cách tô ta luôn có 4 góc cùng màu
CM: với n lẻ, (TH n chẵn CM tương tự)
Trong 1 cột luôn có ít nhất \(\frac{n+1}{2}\)ô cùng màu, và có \(\frac{n+1}{2}.C^{\frac{n+1}{2}}_n\)cách sắp xếp chúng trong cột 1
Mà có tất cả \(n^3-n^2+n\)ô => sẽ có ít nhất \(\frac{n^3-n^2+n+1}{2}\)ô cùng màu
do vậy trong n(n-1) cột còn lại luôn tồn tại 1 cột có cách tô màu cùng với cách tô ở cột 1
đó chính là hình chữ nhật cần tìm
ÁP DỤNG BÀI NÀY: ta dễ dàng tìm ra n=7
lời giải tổng quát có thể hơi khó hiểu nhưng áp dụng cụ thể cho bài này em sẽ thấy dễ hieur nhé!
Trên bàn cờ kích thước 10×10 ô vuông. Thực hiện cách tô màu như sau: Mỗi lần tô màu hai ô cùng hàng hoặc cùng cột liền nhau. Hỏi có thể tô 49 lần như vậy để chỉ còn 2 ô ở hai góc đối diện của bẳng được hay không ?
giúp mình với
1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
-1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 |
1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
-1 | |||||||||
1 | |||||||||
-1 | |||||||||
1 | |||||||||
-1 | |||||||||
1 | |||||||||
-1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 |
Đánh số các ô bằng các số \(1\)và \(-1\)sao cho hai ô liền nhau cùng hàng hoặc cùng cột là khác nhau
(hình minh họa)
Khi đó tổng các ô trên bàn cờ là \(0\).
Khi xóa đi hai ô liền nhau cùng hàng hoặc cùng cột thì tổng đó không đổi (do xóa đi \(1\)và \(-1\)).
Giả sử có thể sau \(49\)lần xóa còn \(2\)ô góc đối diện.
Khi đó tổng hai ô còn lại đó là \(-1+\left(-1\right)=-2\)hoặc \(1+1=2\)(mâu thuẫn)
Do đó không thể có cách tô thỏa mãn.
Giả sử số ô tô màu đỏ ở tất cả các dòng đều khác nhau mà mỗi dòng có 10 ô nên số ô được tô màu đỏ ít nhất là:
Giả sử số ô tô màu đỏ ở tất cả các dòng đều khác nhau mà mỗi dòng có 10 ô nên số ô được tô màu đỏ ít nhất là:
Đáp số : 45 ô
k mik nha ôi cậu học tthdb1 à hhaan mộ quá
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (ô).
Lí luận tương tự với màu xanh, màu tím ta cũng có kết quả như vậy.
Do đó bảng sẽ có ít nhất 45 + 45 + 45 = 135 (ô). Điều này mâu thuẫn với bảng chỉ có 100 ô.
Chứng tỏ ít nhất phải có 2 dòng mà số ô tô bởi cùng một màu là như nhau.
Đối với các cột, ta cũng lập luận tương tự như trên. Do đó cả hai bạn đều nói đúng.
Cho bảng ô vuông 3x3 mỗi ô vuông được tô xanh hoặc đỏ. Có bao nhiêu cách tô màu mà không để xuất hiện bảng 2x2 gồm toàn các ô màu đỏ?
Bài 54: Cho bảng ô vuông gồm 10 dòng và 10 cột. Hai bạn Tín và Nhi tô màu các ô, mỗi ô một màu trong 3 màu: xanh, đỏ, tím. Bạn Tín bảo: "Lần nào tô xong hết các ô cũng có 2 dòng mà trên 2 dòng đó có một màu tô số ô dòng này bằng tô số ô dòng kia". Bạn Nhi bảo: "Tớ phát hiện ra bao giờ cũng có 2 cột được tô như thế".
Nào, bạn hãy cho biết ai đúng, ai sai?
Bài giải: Giả sử số ô tô màu đỏ ở tất cả các dòng đều khác nhau mà mỗi dòng có 10 ô nên số ô được tô màu đỏ ít nhất là:
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (ô).
Lí luận tương tự với màu xanh, màu tím ta cũng có kết quả như vậy.
Do đó bảng sẽ có ít nhất 45 + 45 + 45 = 135 (ô). Điều này mâu thuẫn với bảng chỉ có 100 ô.
Chứng tỏ ít nhất phải có 2 dòng mà số ô tô bởi cùng một màu là như nhau.
Đối với các cột, ta cũng lập luận tương tự như trên. Do đó cả hai bạn đều nói đúng.
là sao bạn tự ra đề tự giải hả mình cũng thanks bạn nhìu nha!!!
Bài 54 Cho bảng ô vuông gồm 10 dòng và 10 cột. Hai bạn Tín và Nhi tô màu các ô, mỗi ô một màu trong 3 màu : xanh, đỏ, tím. Bạn Tín bảo : "Lần nào tô xong hết các ô cũng có 2 dòng mà trên 2 dòng đó có một màu tô số ô dòng này bằng tô số ô dòng kia". Bạn Nhi bảo : "Tớ phát hiện ra bao giờ cũng có 2 cột được tô như thế".Nào, bạn hãy cho biết ai đúng, ai sai ?
Cho bảng ô vuông gồm 10 dòng và 10 cột. Hai bạn Tín và Nhi tô màu các ô, mỗi ô một màu trong 3 màu: xanh, đỏ, tím. Bạn Tín bảo: "Lần nào tô xong hết các ô cũng có 2 dòng mà trên 2 dòng đó có một màu tô số ô dòng này bằng tô số ô dòng kia". Bạn Nhi bảo: "Tớ phát hiện ra bao giờ cũng có 2 cột được tô như thế".
Bài giải: Giả sử số ô tô màu đỏ ở tất cả các dòng đều khác nhau mà mỗi dòng có 10 ô nên số ô được tô màu đỏ ít nhất là:
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (ô).
Lí luận tương tự với màu xanh, màu tím ta cũng có kết quả như vậy.
Do đó bảng sẽ có ít nhất 45 + 45 + 45 = 135 (ô). Điều này mâu thuẫn với bảng chỉ có 100 ô.
Chứng tỏ ít nhất phải có 2 dòng mà số ô tô bởi cùng một màu là như nhau.
Đối với các cột, ta cũng lập luận tương tự như trên. Do đó cả hai bạn đều nói đúng.