Tìm nghiệm nguyên: 2xy + x + y = 83
Tìm tất cả các nghiệm của phương trình:2xy+x×y=83
Tìm nghiệm nguyên 5x2 +y2 =17+2xy
Tìm nghiệm nguyên của pt: \(x^2-2xy+2y^2-4x=\)\(-8\)
viết lại pt dưới dạng
\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)
\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)
\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)
\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)
thay y=2
\(x^2-4x+8-4x=-8\)
\(x^2-8x+16=0\)
\(\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(x^2-2xy+2y^2-4x=-8\)
\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)
\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)
Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)
Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)
Vậy x = 4 và y = 2
Bài bạn gửi hay đấy .Chúc bạn học tốt.
Tìm nghiệm (x , y) thỏa mãn x<0 , y<0 của hệ phương trình
\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\\x^2-y^3+xy=1\end{cases}}\)
ko giải thì thôi mình tích sai mỗi ngày 3 cái đó
bn noob đòi hok toán ơi nếu bn ko tl thì đừng đăng vậy nx mik thấy bn viết từ này rất nhiều trong các câu hỏi
xl anh Châu nha e mới lớp 6 ko tl đc e tl vì nhắc bn kia thôi
thành thật xlllllllllll
tìm các nghiệm nguyên (x^2+y)(x+y^2)
Cho (x,y) là nghiệm của pt: \(x^2y+2xy-4x+y=0\). Tìm giá trị lớn nhất của y
(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
cho (x,y) là nghiệm của pt \(x^2y+2xy-4x+y=0\). Tìm giá trị lớn nhất của y.
Ngô Mạnh Kiên cậu giải ra giúp mk đc ko?
\(\Delta\)=b^2-4ac=4y^2-4(-4x+y)*y=4y^2+16xy-4y^2=16xy>0
theo cauchy 16xy<=256X^2+y^2
=>16x=y=0
tìm nghiệm nguyên 3xy+x-y=1
\(3xy+x-y=1\)<=>\(3\left(3xy+x-y\right)=3\)<=>\(9xy+3x-3y=3\)
<=>\(9xy+3x-3y-1=0\)<=>\(3x\left(y+1\right)-3\left(y+1\right)=0\)
<=>\(\left(y+1\right)\left(3x-3\right)=0\)<=>\(\orbr{\begin{cases}y+1=0\\3x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-1\\x=1\end{cases}}\)
Với y=-1 => x=0
Với x=1 => y=0
Vậy ................
3xy+x-y=1 <=> 3xy+x=y+1 <=> x(3y+1)=y+1
=> x=\(\frac{y+1}{3y+1}\)<=> 3.x=\(\frac{3y+3}{3y+1}=\frac{3y+1+2}{3y+1}=1+\frac{2}{3y+1}\)
Để x nguyên thì 2 chia hết cho 3y+1 => có các TH:
+/ 3y+1=-1 => y=-2/3 => Loại
+/ 3y+1=1 => y=0; => 3x=1+2=3 => x=1
+/ 3y+1=-2 => y=-1 ; x=0
+/ 3y+1=2 => y=1/3 (Loại)
ĐS: \(\hept{\begin{cases}x=0;y=-1\\x=1;y=0\end{cases}}\)
Tìm nghiệm nguyên y^3-x^3=2x+1