Chứng Minh Rằng A là một số chính phương
A = (X - 1) (X - 2) (X - 3) (X - 4 ) + 1
Giúp mình với
Bài 1: Chứng minh rằng với mọi số nguyên x, y thì
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương
giúp mình với mọi người ơi!!! Khẩn cấp!!!
1. Cho x,y thuộc N. Chứng minh rằng (x + 2y chia hết cho <=> (3x -4y) chia hêt cho 5
2. Viết liên tiếp số 2a1 (2007 lần) ta đc số chia hết cho 11. Tìm a
3. Chứng minh rằng một số chính phương hoặc chia hết cho 4 hoặc chia 4 dư 1
4. Chứng minh rằng nếu n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24.
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
a) Chứng minh rằng với mọi số nguyên x,y là số nguyên thì giá trị của đa thức:
A= (x+y)(x+2y)(x+3y)(x+4y)+y4 là một số chính phương.
b) Chứng minh rằng n3 +3n2 +2n chia hết cho 6 với mọi số nguyên.
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 1/4 k(k+1)(k+2).4 = 1/4 k(k+1)(k+2).[(k+3) – (k-1)]
= 1/4 k(k+1)(k+2)(k+3) - 1/4 k(k+1)(k+2)(k-1)
→ S = 1/4.1.2.3.4 - 1/4.0.1.2.3 + 1/4.2.3.4.5 - 1/4.1.2.3.4 +...+ 1/4k(k+1)(k+2)(k+3) - 1/4k(k+1)(k+2)(k-1) = 1/4k(k+1)(k+2)(k+3)
4S + 1 = k(k+1)(k+2)(k+3) + 1
Theo kết quả bài 2 → k(k+1)(k+2)(k+3) + 1 là số chính phương.
chứng minh rằng đa thức x^25+x^2+1 chia hết cho x^2+x+1
tìm số nguyên a để a^4-a^3+2a^2 là số chính phương
(x25-x22)+(x22-x19)+(x19-x16)...+(x4-x) chia hết cho x2+x+1
hay x25-x chia hết cho x2+x+1
mà x2+x+1 chia hết cho x2+x+1
=> x25+x2+1 chia hết cho x2+x+1
2.a2(a2-a+2) là cp
Vì a2 là cp để a2(a2-a+2) là cp <=> a2-a+2 cũng là cp <=> 4(a2-a+2) là cp
Đặt 4(a2-a+2)=k2 (k tự nhiên)
<=> (2a-1)2+7=k
<=>7=(k-2a+1)(k+2a-1)=7.1=1.7=-1.(-7)=-7.(-1)
Kẻ bảng tự tìm nốt giá trị của a nhé
mong các pn trả lời giúp mik. mik sẽ tick cho các pn
Bài 6: Chứng minh rằng P= \(x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\) là một số chính phương với mọi số thực x và a. (Số chính phương là số có dạng \(a^2,a\in N\))
\(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)
Đặt \(x^2+ax=t\)
Khi đó: \(P=t\left(t-2a^2\right)+a^4\)
\(=t^2-2ta^2+\left(a^2\right)^2=\left(t-a^2\right)^2=\left(x^2+ax-a^2\right)^2\)
Chúc bạn học tốt.
Mình đang học về chuyên đề số chính phương có vài câu hỏi khó nhờ các bạn giải giúp trước thứ Ba ngày 26/1/2016 cảm ơn các bạn nhiều lắm !!!
Câu 1: a) Chứng minh 11...122...25 là số chính phương (với n số 1 và n+1 số 2)
b) Cho B = 44...4 (100 số 4) = 4 x 11...1 (100 số 1) là số chính phương. Chứng minh 11...1 (100 số 1) là số chính phương
Câu 2: a) Cho các số A= 11.....11 (2m chữ số 1) ; B = 11...11 (m+1 số 1) ; C = 66...6 (m chữ số 6)
CMR: A+B+C+8 là số chính phương
b) CMR: Với mọi x,y thì A = (x+y)(x+2y)(x+3y)(x+4y) + y4 là số chính phương
Co ai giup minh ko chang le newbie ko dc giup sao
Cho số nguyên x, chứng minh rằng x(x+1)(x+2)(x+3)+1 là số chính phương.
Giúp mình bài này nha
1) Chứng minh: x-x2-3<0 với mọi x
2) Cho a=111...1(2n chữ số 1); b=444...4 (n chữ số 4). Chứng minh a+b+1 là 1 số chính phương