Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đăng Khoa
Xem chi tiết
magic school
18 tháng 10 2016 lúc 20:49

3a+4b=3a+[3+1]b=3a+3b+b=3[a+b]+b 

vì 3[a+b] chia hết cho 19 nên b chia hết cho 19

4a+3b=a[3+1]+3b=3a+a+3b=3[a+b] +a

vì 3[a+b] chia hết cho 19 nên b chia hết cho 19

batman4019
12 tháng 8 2019 lúc 19:50

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

Trịnh Hà Vi
Xem chi tiết
Lê Nguyễn Gia Bảo
31 tháng 3 2023 lúc 19:54

Ai có lời giải k ạ

Nico Robin
Xem chi tiết
Lương Quang Thắng
Xem chi tiết
Nguyễn Thị Thủy Tiên
Xem chi tiết
Nguyễn Ngọc Anh Minh
31 tháng 8 2015 lúc 16:09

 

4a+3b=7a+7b-3a-4b=7(a+b)-(3a+4b) chia hết cho 7

+ Do 7(a+b) chia hết cho 7. Theo t/c chia hết của 1 tổng (hiệu) để 4a+3b chia hết cho 7 thì (3a+4b) cũng phải chia hết cho 7

=> 3a+4b chia hết cho 7

Hoàng Phương Trang
Xem chi tiết
phạm thị bích huyền
Xem chi tiết
Lê Minh Anh
25 tháng 8 2016 lúc 9:20

Xét hiệu: 3(a + 2b) - (3a - 4b) = 3a + 6b - 3a + 4b = 10b chia hết cho 5.         (1)

Mặt khác: (a + 2b) chia hết cho 5  => 3(a + 2b) cũng chia hết cho 5                (2)

Từ (1) và (2) ta có: (3a - 4b) chia hết cho 5.

Trần Mai Linh
25 tháng 8 2016 lúc 9:23

Ta có (a+ 2b) chia hết cho 5.

Suy ra a+b+b tận cùng bằng 0,5.

Suy ra 2b = 0 ( số chẵn)

Xét 2TH

TH1 a có tận cùng = 0 suy ra 3a có tận cùng = 0

4b=2b*2 có tận cùng =0 (1)

TH2 a có tận cùng là 5 suy ra 3a có tận cùng = 5

4b=2b*2 có tận cùng =0 (2)

Từ 1 và 2 suy ra nếu (a+2b) chia hết cho 5 thì (3a -4b) chia hết cho 5

Na'Ss Nguyễn
Xem chi tiết
nguyenvankhoi196a
6 tháng 11 2017 lúc 6:26

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

nguyễn thùy linh
2 tháng 12 2017 lúc 12:32

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

Diệp Băng Dao
2 tháng 1 2022 lúc 17:04

Ta có : 83a + 38b chia hết cho 17

Suy ra : 17a +83a + 38b + 17b chia hết cho 17

Suy ra 100a +55b chia hết cho 17

Suy ra 5×(20a +11b ) chia hết cho 17

Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17) 

Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17

tran nguyen gia han
Xem chi tiết
Trần Thanh Tùng
15 tháng 11 2018 lúc 11:06

7a+7b+4a+4b=7(a+b)+4(a+b)=(a+b)(7+4)=11(a+b) suy ra (7a+7b+4a+4b) chia hết cho 11.Học tốt