tim x,y biet : x^2+y^2-2xy-4=0
tim x,y nguyen biet x^2-2xy+3=0
x.(x+2y) = -3
x, y nguyên nên ta có bảng sau
x | 1 | -1 | 3 | -3 |
x+2y | 3 | -3 | 1 | -1 |
y | 1 | -1 | -1 | 1 |
Kết luận nhé
Tim cap x,y biet x,y thuoc Z va
2xy- 4+2x+y=0
tim x va y biet rang
a) x2+2y2+2xy-2y +1=0
b) x2+2y2+2xy -2x+2=0
......................?
mik ko biết
mong bn thông cảm
nha ................
a) x2+2y2+2xy-2y+1=0
\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0
\(\Leftrightarrow\)(x+y)2+(y-1)2=0
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x=-1, y=1
a/ \(x^2+2y^2+2xy-2y+1=0\)
<=> \(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
<=> \(\left(x+y\right)^2+\left(y-1\right)^2=0\)
<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
b/ \(x^2+2y^2+2xy-2x+2=0\)
<=> \(\left(x^2+2xy+y^2\right)+\left(2y-2x+2\right)=0\)
<=> \(\left(x+y\right)^2+2\left(y-x+1\right)=0\)
<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-x+1\right)=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\\y-x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\\y-x=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\left(1\right)\\x-y=1\left(2\right)\end{cases}}\)
Trừ (1) và (2)
=> \(2y=-1\)
<=> \(y=-\frac{1}{2}\)
<=> \(x=\frac{1}{2}\)(vì \(x+y=0\)<=> \(x=-y\))
tim x,y biet
x2 + 2xy + 2y2 — 2xx +2 =0
Tim x,y biet:2xy^2+x+y+1=x^2+2y^2+xy
5/ Tim x,y,z biet
a/x^2+2y^2+2xy-2y+1=0
b/5x^2+3y^2+2^2-4x+6xy+4z+6=0
a)\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+2xy+y^2+y^2-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y-1=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=-y=-1\end{cases}}\)
Vậy x=-1 y=1
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=1\end{cases}\Rightarrow}x=-1;y=1}\)
b) \(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow2.\left(x-1\right)^2+3.\left(x+y\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\) \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow y=-x=-1\)
\(\left(z+2\right)^2=0\Rightarrow z+2=0\Rightarrow z=-2\)
tim x,y biet 5x^2 -2xy+ 2y^2=18 ; x,y la so nguyen
Tim so nguyen x va y biet : x2 - 2xy +y2 = 0
(x-y)2=0
x-y=0
x=y
voi moi so nguyen x,y
x2 - 2xy + y2 = 0
x2 - xy - xy + y2 = 0
x(x - y) - y(x - y) = 0
(x - y)(x - y) = 0
(x - y)2 = 0
x - y = 0
=> x = y
Vậy x = y thì x2 - 2xy + y2 = 0
tim x,y,z biet 3y\(^2\)+x\(^2\)+2xy+2x+6y+3=0