chứng tỏ rằng aaaaaaaaa chia hết cho 9
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
chứng tỏ rằng nếu nhân số12345679 với số a bất kì rồi nhân kết quả với 9 thì được số có 9 chữ số có dạng aaaaaaaaa
12345679. 9= 111111111
Vậy 111111111. a= aaaaaaaaa
2. Cho biết 7a - 6 chia hết cho 9 . Chứng tỏ rằng a+5bchia hết cho 9
3. Chứng tỏ rằng 2x + 3 y chia hết cho 17 khi và chỉ khi 9x + 5y chia hết cho 17
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng tỏ rằng: 109+2 chia hết cho 3
chứng tỏ rằng: 1020-1chia hết cho 9
10^9 + 2 = 100....0 + 2 = 100...02.
Tổng các chữ số của số trên là:
1 + 0 + ... + 0 + 2 = 3.
Vậy số trên chia hết cho 3 vì có tổng các chữ số chia hết cho 3 => 10^9 + 2 chia hết cho 3 (đpcm)
Bài kia làm tương tự
a) chứng tỏ rằng a= 9^11+1 chia hết cho cả 2 và 5
b) chứng tỏ rằng a= 9^2n+1chia hết cho 10
a) chứng tỏ rằng (101234+2)chia hết cho 3
b)chứng tỏ rằng (10789 +8) chia hết cho 9
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
Chứng tỏ rằng
a, Chứng tỏ rằng trong 5 số tự nhiên liên tiếp có một số chia hết cho 3
b, Chứng tỏ rằng (9m+1) (9m+2) (9m+3) (9m+4) chia hết cho 5 với mọi n thuộc N
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
cho (7a-b) chia hết cho 9 chứng tỏ rằng (a+5b) chia hết cho 9
7a-b chia hết cho 9
=>7a-b+36b chia hết cho 9
=>7a+35b chia hết cho 9
=>7(a+5b) chia hết cho 9
Vì (7;9)=1=>a+5b chia hết cho 9
=>đpcm