So sánh
\(\sqrt{\frac{10}{17}}va\frac{3}{4}\)
so sánh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}\)\(\)va \(10\)
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)
So sánh phân số sau:
Phải có 4 yếu tố:
1/ Quy đồng
2/ Nhân chéo
3/ Tính bắc cầu
4/ So sánh bù
a/ \(\frac{-17}{39};\frac{18}{-39}va\frac{-17}{41}\)
b/ \(\frac{42}{-37}va\frac{-56}{43}\)
c/ \(\frac{37}{67}va\frac{377}{677}\)
d/ \(\frac{5}{8};\frac{17}{19}va\frac{22}{17}\)
Giúp mk zới nha, tối ni ik hc ùi
a)\(\frac{18}{-39}=-\frac{18}{39}\)
Vì -17>-18 nên \(-\frac{17}{39}>-\frac{18}{39}\)(1)
Vì 39<41 nên \(-\frac{17}{39}< -\frac{17}{41}\)(2)
Từ (1);(2)=>\(\frac{-18}{39}< -\frac{17}{39}< -\frac{17}{41}\)
b)Ta có: \(\frac{42}{-37}=-\frac{42}{37}>\frac{-42}{35}=\frac{-6}{5}=-1,2\); \(-\frac{56}{43}< -\frac{55}{43}< -\frac{55}{44}=-\frac{5}{4}=-1,25\)
Vì -1,2>-1,25 nên 42/-37>-56/43
c)Ta có:25049<25259 hay 37*677<67*377 nên 37/67<377/677
d)Ta có:\(\frac{5}{8}=\frac{10}{16}< \frac{34}{16}=\frac{17}{8}< \frac{17}{19}\); \(\frac{17}{19}< 1;\frac{22}{17}>1=>\frac{22}{17}>\frac{17}{19}\)
=>\(\frac{22}{17}>\frac{17}{19}>\frac{5}{8}\)
làm hơi lâu
So sánh:
\(\frac{15-2\sqrt{10}}{3}\) va \(\sqrt{10}\)
Xét A-B=5-\(\sqrt{10}\)(2/3+1)= 5-\(\frac{5\sqrt{10}}{3}\)=5(1-\(\frac{\sqrt{10}}{3}\)) < 0
Vậy A<B
\(2\sqrt{10}=\sqrt{4\cdot10}=\sqrt{40}>\sqrt{36}=6\Rightarrow2\sqrt{10}>6\)
\(\Rightarrow15-2\sqrt{10}< 15-6=9\Rightarrow\frac{15-2\sqrt{10}}{3}< \frac{9}{3}=3\)mà \(3=\sqrt{9}< \sqrt{10}\Rightarrow\frac{15-2\sqrt{10}}{3}< \sqrt{10}\)
a) so sánh
\(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)
b) CMR
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
a)Ta có:\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)
Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)
a) So sanh: \(\sqrt{17}+\sqrt{26}+1\)va \(\sqrt{99}\)
b) CMR: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
a)\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
b) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\)
a) So sánh \(\sqrt{17}+\sqrt{26}+1\)và \(\sqrt{99}\)
b) Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
\(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
b)chứng minh:\(\frac{1}{\sqrt{ }1}+\frac{1}{\sqrt{ }2}+\frac{1}{\sqrt{ }3}+...+\frac{1}{\sqrt{ }99}+\frac{1}{\sqrt{ }100}>10\)
c)cho:S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)vàP=\(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)tính \(\left(S-P\right)^{2016}\)
So sánh phân số
a/ \(\frac{33}{38}va\frac{61}{66}\)
b/ \(\frac{17}{30}va\frac{51}{92}\)
c/ \(\frac{22}{67}va\frac{51}{152}\)
d/ \(\frac{-45}{47}va\frac{31}{-30}\)
giúp mk vs nha, gồm có
1. Quy đồng \
2. Nhân chéo
3. Tính bắc cầu
4. So sánh bù
trong máy cái đó phải có 4 yếu tố đó nha
d.
\(-\frac{31}{30}< -1\)
\(-1< -\frac{45}{47}\)
\(\Rightarrow-\frac{31}{30}< -\frac{45}{47}\)
Chúc bạn học tốt
trong 4 yếu tố trên mà bn
vs lại giúp mk mấy câu kia lun
Thật sự mik ko hỉu đề bài mấy, bn ns rõ hơn đc ko?
A = \(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)va B = \(\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}\)
So sánh