Cho tam giác ABC, gọi M là trung điểm BC, I là trung điểm AM, D là giao điểm của CI và AB. Chứng minh rằng AD = 1/2 DB
Cho tam giác ABC gọi M là trung điểm của BC , I là trung điểm của AM , D là giao điểm của CI và AB . Chứng minh rằng AD = 1/2 DB
dùng t/c 3 đường trung tuyến tam giác nhé!!
54365465
a) Xet tam giac ADE va tam giac FEC ta co:
AE=EC ( E la trung diem AC )
DE= EF ( E la trung diem DF)
goc AED= goc CEF ( 2 goc doi dinh )
==> tam giac ADE = tam giac FEC ( c=g=c)
---> AD= CF ( 2 canh tuong ung )
ma AD=DB ( D la trung diem AB)
nen DB=CF
b) ta co: goc EAD = goc ECF ( tam gia ADE= tam giac FEC)
ma goc EAD va goc ECF nam o vi tri so le trong
nen AD// CF hay AB// CF
xet tam giac BDC va tam giac DCF ta co:
BD= CF ( cm a)
DC=DC ( canh chung)
goc BDC= goc FCD (2 goc so le trong va AB//CF)
--> tam giac BDC= tam giac DCF ( c=g=c)
c) ta co :
DE=1/2 DF ( E la trung diem DF)
DF= BC ( tam giac FCD= tam giac BDC)
--> DE=1/2 BC
Tam giác ABC có M là trung điểm của BC, I là trung điểm của AM. K là trung điểm DB. D là giao điểm của CI và AB. Chứng minh AD = 1/2 DB
Cho tam giác ABC gọi M là trung điểm của BC , I là trung điểm của AM , D là giao điểm của CI và AB . Chứng minh rằng AD = 1/2 DB
a) Xet tam giac ADE va tam giac FEC ta co:
AE=EC ( E la trung diem AC )
DE= EF ( E la trung diem DF)
goc AED= goc CEF ( 2 goc doi dinh )
==> tam giac ADE = tam giac FEC ( c=g=c)
---> AD= CF ( 2 canh tuong ung )
ma AD=DB ( D la trung diem AB)
nen DB=CF
b) ta co: goc EAD = goc ECF ( tam gia ADE= tam giac FEC)
ma goc EAD va goc ECF nam o vi tri so le trong
nen AD// CF hay AB// CF
xet tam giac BDC va tam giac DCF ta co:
BD= CF ( cm a)
DC=DC ( canh chung)
goc BDC= goc FCD (2 goc so le trong va AB//CF)
--> tam giac BDC= tam giac DCF ( c=g=c)
c) ta co :
DE=1/2 DF ( E la trung diem DF)
DF= BC ( tam giac FCD= tam giac BDC)
--> DE=1/2 BC
mình nha mình lại cho
a) Xet tam giac ADE va tam giac FEC ta co:
AE=EC ( E la trung diem AC )
DE= EF ( E la trung diem DF)
goc AED= goc CEF ( 2 goc doi dinh )
==> tam giac ADE = tam giac FEC ( c=g=c)
---> AD= CF ( 2 canh tuong ung )
ma AD=DB ( D la trung diem AB)
nen DB=CF
b) ta co: goc EAD = goc ECF ( tam gia ADE= tam giac FEC)
ma goc EAD va goc ECF nam o vi tri so le trong
nen AD// CF hay AB// CF
xet tam giac BDC va tam giac DCF ta co:
BD= CF ( cm a)
DC=DC ( canh chung)
goc BDC= goc FCD (2 goc so le trong va AB//CF)
--> tam giac BDC= tam giac DCF ( c=g=c)
c) ta co :
DE=1/2 DF ( E la trung diem DF)
DF= BC ( tam giac FCD= tam giac BDC)
--> DE=1/2 BC
cho tam giác ABC, gọi M là trung điểm BC, I là trung điểm AM, D là giao điểm CI và AB. chứng minh rằng DB=2AD
giúp mình với :((( cần gấp lắm
cho tam giác ABC
gọi M là trung điểm Bc
I là trung điểm AM
D là giao điểm của CI và AB
CMR : AD = 1/2 DB
Cho ∆ ABC. Gọi M là trung điểm của BC, I là trung điểm của AM, D là giao điểm của CI và AB, K là trung điểm của BD. Chứng minh rằng: AD = 1/2 BD
Bài làm:
Vì M là trung điểm BC, K là trung điểm BD
=> MK là đường trung bình của tam giác BDC
=> MK // DC <=> MK // DI
Mà I là trung điểm của AM => D là trung điểm AK => AD = DK (1)
Mà K là trung điểm BD => BK = KD = 1/2 BD (2)
Từ (1) và (2) => AD= 1/2 BD
Ta có M,K là trung điểm BC,BD
\(\rightarrow\)MK là đường trung bình \(\Delta\)BCD
\(\rightarrow\)KM//CD
→KM//DI
Mà II là trung điểm AM\(\rightarrow\)DI là đường trung bình \(\Delta\)AKM
\(\rightarrow\)D là trung điểm AK\(\rightarrow\)DA=DK
Lại có Klà trung điểm BD\(\rightarrow\)KD=KB
\(\rightarrow\)DA=DK=KB
\(\rightarrow\)AD=\(\frac{1}{2}\)BD
#Cừu
Cho tam giác ABC,M là trung điểm BC, I là trung điểm AM,D là giao điểm của CI,AB.Chứng minh AD=\(\frac{1}{2}\)DB
Cho tam giác ABC .Gọi M là trung điểm BC ,I là trung điểm AM ,D là giao điểm của CI và AB . C/m AD= 1/2DB
Tự vẽ hình
Xét \(\Delta ACI\)và \(\Delta MCI\)có :
chung đường cao từ C
AI=MI
\(\Rightarrow\Delta ACI=\Delta MCI\)(1)
Xét \(\Delta DAI\)và \(\Delta DMI\) có
chung đường cao từ D
AI=MI
\(\Rightarrow\Delta DAI=\Delta DMI\)(2)
Từ (1) và (2)=>\(\Delta ACD=\Delta MCD\)
Mặt khác:\(\Delta MCD=\frac{1}{2}CBD\)(chung đường cao từ đỉnh D và CM=\(\frac{1}{2}\)BC)
\(\Rightarrow\Delta CBD=2\Delta ACD\)
Mà 2 tam giác này chung đường cao từ đỉnh C=>BD=2AD hay AD=\(\frac{1}{2}\)DB
Bài làm:
Từ M kẻ ME//DC (E thuộc AB)
Ta có: Xét trong tam giác BDC có ME//DC và M là trung điểm của BC
=> E là trung điểm của BD
=> EB = ED (1)
Vì DC//ME => ME//DI
Xét trong tam giác AEM có ME//DI và I là trung điểm của AM
=> D là trung điểm của AE
=> AD = DE (2)
Từ (1) và (2) => AD = DE = EB
Mà \(DE=EB=\frac{1}{2}BD\)
=> \(AD=\frac{1}{2}BD\)
=> ĐPCM
Học tốt!!!!
bài 1: cho tam giác ABC các đường trung tuyến BD, CE. gọi M,N theo thứ tự là trung điểm của BE,CD. gọi I,K theo thứ tự là giao điểm của MN với BD,CE chứng minh rằng MI = IK = KN
bài 2: cho tam giác ABC, M là trung điểm của BC. trên cạnh AB lấy D,E sao cho AD = DE = EB. gọi I là giao điểm của CD và AM. chứng minh I là trung điểm của AM
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha