Cho p, 8p-1 là 2 số nguyên tố. CMR: 8p+1 là hợp số .
Cho 8p-1 là số nguyên tố . CMR 8p+1 là hợp số
cái này cậu chỉ cần mở vài quyển sách nâng cao ra là được mà
Nếu 8p-1 là số nguyên tố ; Nếu 8p+1 là hợp số => 8p+1 là số chẵn.
Ngoại trừ số 2 ra tất cả số chắn đều là hợp số .
Vậy 8p+1 là hợp số do nó là số chẵn (ĐPCM)
Chỗ "do nó là số chẵn" không viết cũng được
ai thấy đúng thì tk
ai thấy sai sửa giùm mình nhé
Cho p và 8p-1 là số nguyên tố .CMR:8p+1 là hợp số
Với p=3
=>8p‐1=23 ﴾thỏa mãn﴿
8p+1=25 là hợp số =>﴾loại﴿
Với p khác 3
=>p không chia hết cho 3
=>8p không chia hết cho 3
mà ﴾8p‐1﴿p﴾8p+1﴿là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p‐1 >3 ﴾p thuộc N﴿
=>8p‐1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số ﴾ĐPCM﴿
với p=3 suy ra p-1=23
8p+1=25(loại)
với p khác 3 suy ra p không chia hết cho3 suy ra 8p không chia hết cho3 mà (8p-1)p(8p+1) là tích của 3 số TN liên tiếp
Theo bài ra 8p-1>3(p thuộc N) suy ra 8p-1 ko chia hết cho 3
suy ra 8p+1 chia hết cho 3 mà 8p+1>3
suy ra 8p+1 là hợp số
Cho p là số nguyên tố
CMR:8p+1 và 8p-1 ko cùng là số nguyên tố hoặc cùng là hợp số
p là số nguyên tố => p không chia hết cho 3 => 8p không chia hết cho 3
Mà 8p-1,8p,8p+1 là 3 số tự nhiên liên tiếp nên trong đó có một số chia hết cho 3
=>8p-1 hoặ 8p+1 chia hết cho 3
Vậy...
Cho p và 8p - 1 là số nguyên tố. CMR: 8p + 1 là hợp số
nếu p lớn hơn 3 thì giải như sau
8p-1 là số nguyên tố vậy 8p-1 dư 1 hoặc 2
mà p là số nguyên tố vậy p :3 dư 1 hoặc 2
mà 8p-1 dư 1 hoặc 2
->p:3 dư 1 vì nếu dư2 thì8p-1 chia hết cho 3
vậy 8p :3 dư2
->8p+1 chia hết cho 3
vậy 8p+1 là hợp số
Nhận xét : 3 số 8p-1; 8p; 8p + 1 là 3 số tự nhiên liên tiếp
Ta có tính chất: Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
nên tích (8p-1). 8p. (8p+1) chia hết cho 3
mà 8p ; 8p - 1 không chia hết cho 3 nên 8p+ 1 phải chia hết cho 3 => 8p+1 là số nguyên tố
Cho p và 8p-1 là các số nguyên tố .CMR 8p+1 là hợp số
Cho p và 8p-1 là các số nguyên tố . CMR 8p+1 là hợp số
Cho p và 8p-1 là các số nguyên tố:
CMR:8p+1 là hợp số
Nhận xét: 8p - 1, 8p, 8p + 1 là 3 số nguyên liên tiếp nên tích (8p - 1)8p.(8p +1) chia hết cho 3
hơn nữa, vì 8 không chia hết cho 3 và p, 8p + 1 là các số nguyên tố nên 8p và 8p - 1 không chia hết cho 3
suy ra 8p + 1 chia hết cho 3. Vậy 8p + 1 là hợp số.
Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
nhưng sao bài
này lại có cách giải
dài dòng như
thế chứ mình tưởng
ít lắm cơ mà
cho p là số nguyên tố va 8p-1 là số nguyên tố .cmr:8p+1 la hợp số .
bạn nào đúng mk tích cho
ta có 8p-1=9p-(p+1)
8p+1=9p-(p-1)
xét 3số nguyên liên tiếp p-1;p;p+1
pvà p+1ko thể chia hết cho 3
=>p-1 chia hết cho 3
8p+1=9p-(p-1) chia hết cho 3
=> 8p+1 là hợp số
CMR:
a.Nếu p vầ 5p+1 là các số nguyên tố lớn hơn 3 thì 10p+1 là hợp số
b.p và 8p^2-1 là số nguyên tố lớn hơn 3 thì 8p^2 + 1 là hợp số