Cho số hữu tỉ a/b với a,b\(\in\)Z,b lớn hơn 0.Chứng minh rằng:Nếu có a lớn hơn b thì a/b lớn hơn 1
Cho số hữu tỉ \(\frac{a}{b}\)với \(a,b\in Z;b>0\).Chứng minh rằng:
Nếu có \(\frac{a}{b}\)lớn hơn 1 thì a>b
Nếu a/b > 1
=>a/b - b/b >0
=>(a-b)/b >0
=>a-b>0
=>a>b(đpcm)
Ta có: \(\frac{a}{b}>1\)
\(\Leftrightarrow\frac{a}{b}-1>0\)
\(\Leftrightarrow\frac{a-b}{b}>0\)
Mà theo đề bài, b > 0 => \(a-b>0\Leftrightarrow a>b\)
Vậy \(\frac{a}{b}>1\Leftrightarrow a>b\)
Cho a/b>1>Đổi 1=a/a từ đấy ta so sánh a/b>a/a.Vậy trong đó nếu a<b thì a/b<a/a.Nên a>b thì a/b>a/a
1. so sánh số hữu tỉ \(\frac{a}{b}\) (a,b \(\in\) \(ℤ\) , b \(\ne\)0) với số 0 khi a,b cùng dấu và khác dấu
2.giả sử x=\(\frac{a}{m}\), y=\(\frac{b}{m}\)(a,b,m \(\inℤ\) ,m lớn hơn 0) và x nhỏ hơn y. Hãy chứng tỏ rằng nếu chọn z=\(\frac{a+b}{2m}\)thì ta có x lớn hơn z lớn hơn y
A) Cho các số hữu tỉ x= a/b; y = c/d; z= a+c/b+d với a,b,c,d \(\in\) Z và b>0, d>0 và x < y
Hãy chứng tỏ rằng x < z< y
B) Hãy viết ba số hữu tỉ khác tử số và khác mẫu số sao cho chúng lớn hơn -1/5 và nhỏ hơn -1/6
Giúp mình nha!
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3
1. Hãy viết 3 số hữu tỉ sao cho số đó lớn hơn -1/3 và nhỏ hơn -1/4 .
2. So sánh a/b với a + 2016 / b + 2016 với a , b thuộc Z ,a > b .
3 . tìm phân số có mẫu bằng 7 , lớn hơn -5/9 và nhỏ hơn -2/9 .
chứng tỏ rằng nếu a phần nhỏ hơn c phần d (b lớn hơn 0, đ lớn hơn 0 ) thì a phần b nhỏ hơn a + c phần b+d nho hon c phan d
hãy viết ba số hữu tỉ xen giữa âm 1 phần 3 và âm 1 phần 4
a)a/b > c/d (b > 0, d > 0). Chứng minh rằng c/d < c + a/d + b. Từ đó suy ra giữa hai số hữu tỉ x > y bao giờ cũng có vô số số hữu tỉ.
b) Tìm 5 số hữu tỉ lớn hơn 1/2004 đồng thời nhỏ hơn 1/2003
Cho hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(a,b,c,d ϵ Z; b,d ≠ 0)
Chứng tỏ rằng nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\).
Áp dụng: Tìm 3 số hữu tỉ lớn hơn \(\dfrac{-6}{7}\) và nhỏ hơn \(\dfrac{-1}{3}\).
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
cho a,b,c là 3 số hữu tỉ thỏa mãn a+b+c=1, a lớn hơn bằng b, b lớn hơn bằng c, c lớn hơn bằng 0
a) a có thể là 2/5 ko?
b) a có thể là 1/5 ko
c) tìm giá trị nhỏ nhất của a
d) tìm giá trị lớn nhất của a